Numpy.genfromtxt deleting square brackets in dtype.names

独自空忆成欢 提交于 2019-11-28 05:51:20

问题


I'm trying to read in data from files using numpy.genfromtxt. I set the names parameter to a comma-separated list of strings, such as

names = ['a', '[b]', 'c']

However, when the array is returned, the dtype.names value returns ('a', 'b', 'c')

The deletechars parameter is either not set or forced to be None. I've checked that creating a numpy.ndarray with a dtype that has a named column with square brackets preserves the square brackets, so it must be that genfromtxt is deleting the square brackets. Is there a way to turn off this unexpected feature?

Note, this behavior also occurs if the names parameter is set to True. I've tested this in numpy versions 1.6.1 and 1.9.9


回答1:


I've complained about this field name mangling behavior before on the numpy issue tracker and mailing list. It has also cropped up in several previous questions on SO.

In fact, by default np.genfromtxt will mangle field names even if you specify them directly by passing a list of strings as the names= parameter:

import numpy as np
from io import BytesIO

s = '[5],name with spaces,(x-1)!\n1,2,3\n4,5,6'

x = np.genfromtxt(BytesIO(s), delimiter=',', names=True)
print(repr(x))
# array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)], 
#       dtype=[('5', '<f4'), ('name_with_spaces', '<f4'), ('x1\n1', '<f4')])

names = s.split(',')[:3]
x = np.genfromtxt(BytesIO(s), delimiter=',', skip_header=1, names=names)
print(repr(x))
# array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)], 
#       dtype=[('5', '<f4'), ('name_with_spaces', '<f4'), ('x1\n1', '<f4')])

This happens despite the fact that field names containing non-alphanumeric characters are perfectly legal:

x2 = np.empty(2, dtype=dtype)
x2[:] = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)]
print(repr(x2))
# array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)], 
#       dtype=[('[5]', '<f4'), ('name with spaces', '<f4'), ('(x-1)!\n1', '<f4')])

The logic of this behavior escapes me.


As you've seen, passing None as the deletechars= argument is not enough to prevent this from happening, since this argument gets initialized internally to a set of default characters within numpy._iotools.NameValidator.

However, you can pass an empty sequence instead:

x = np.genfromtxt(BytesIO(s), delimiter=',', names=True, deletechars='')
print(repr(x))
# array([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)], 
#       dtype=[('[5]', '<f8'), ('name_with_spaces', '<f8'), ('(x-1)!', '<f8')])

This could be an empty string, list, tuple etc. It doesn't matter as long as its length is zero.




回答2:


In String formatting issue (parantheses vs underline) I found that dtype=None is required in addition to the deletechars parameter:

https://stackoverflow.com/a/32540939/901925

In [168]: np.genfromtxt([b'1,2,3'],names=['a','[b]','xcx'],delimiter=',',deletechars='',dtype=None)
Out[168]: 
array((1, 2, 3), 
      dtype=[('a', '<i4'), ('[b]', '<i4'), ('xcx', '<i4')])

With the default dtype (float), deletechars is used, but the names pass through a second validator, easy_dtype which does not get this parameter.

In [170]: np.genfromtxt([b'1,2,3'],names=['a','[b]','xcx'],delimiter=',',deletechars='x')
Out[170]: 
array((1.0, 2.0, 3.0), 
      dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')])

https://github.com/numpy/numpy/pull/4649


Field names can be changed after loading:

In [205]: data=np.genfromtxt([b'1 2 3 txt'],names=['a','b','c','d'],dtype=[int,float,int,'S4'])

In [206]: data.dtype.names
Out[206]: ('a', 'b', 'c', 'd')

In [207]: data.dtype.names=['a','[b]','*c*','d']

In [208]: data
Out[208]: 
array((1, 2.0, 3, 'txt'), 
      dtype=[('a', '<i4'), ('[b]', '<f8'), ('*c*', '<i4'), ('d', 'S4')])

This works for names taken from the file itself:

In [212]: data=np.genfromtxt([b'a [b] *c* d','1 2 3 txt'],dtype=[int,float,int,'S4'],names=True)


来源:https://stackoverflow.com/questions/35234643/numpy-genfromtxt-deleting-square-brackets-in-dtype-names

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!