问题
I am trying to use some_model.predict(x)
within a custom loss function.
I found this custom loss function:
_EPSILON = K.epsilon()
def _loss_tensor(y_true, y_pred):
y_pred = K.clip(y_pred, _EPSILON, 1.0-_EPSILON)
out = -(y_true * K.log(y_pred) + (1.0 - y_true) * K.log(1.0 - y_pred))
return K.mean(out, axis=-1)
But the problem is that model.predict()
is expecting a numpy array.
So I looked for how to convert a tensor (y_pred
) to a numpy array.
I found tmp = K.tf.round(y_true)
but this returns a tensor.
I have also found: x = K.eval(y_true)
which takes a Keras variable and returns a numpy array.
This produces the error: You must feed a value for placeholder tensor 'dense_78_target' with dtype float....
.
Some people suggested setting the learning phase to true. I did that, but it did not help.
What I just want to do:
def _loss_tensor(y_true, y_pred):
y_tmp_true = first_decoder.predict(y_true)
y_tmp_pred = first_decoder.predict(y_pred)
return keras.losses.binary_crossentropy(y_tmp_true,y_tmp_pred)
Any help would be appreciated.
This works:
sess = K.get_session()
with sess.as_default():
tmp = K.tf.constant([1,2,3]).eval()
print(tmp)
I also tried this now:
tmp = first_decoder(y_true)
This fails the assertion:
assert input_shape[-1]
Maybe someone knows how to resolve this?
Update: I can now feed it through the model with:
y_t = first_decoder(K.reshape(y_true, (1,512)))
y_p = first_decoder(K.reshape(y_pred, (1,512)))
But when I try to return the binary cross entropy the shape is not right:
Input to reshape is a tensor with 131072 values, but the requested shape has
512
I figured out that 131072 was the product of my batch size and input size (256*512). I then adopted my code to reshape to (256,512) size. The first batch runs fine, but then I get another error that says that the passed size was (96,512).
[SOLVED]Update: It works now:
def _loss_tensor(y_true, y_pred):
num_ex = K.shape(y_true)[0]
y_t = first_decoder(K.reshape(y_true, (num_ex,512)))
y_p = first_decoder(K.reshape(y_pred, (num_ex,512)))
return keras.losses.binary_crossentropy(y_t,y_p)
来源:https://stackoverflow.com/questions/52284595/keras-predict-model-within-custom-loss-function