Python: Generate random values from empirical distribution

允我心安 提交于 2020-12-24 14:28:48

问题


In Java, I usually rely on the org.apache.commons.math3.random.EmpiricalDistribution class to do the following:

  • Derive a probability distribution from observed data.
  • Generate random values from this distribution.

Is there any Python library that provides the same functionality? It seems like scipy.stats.gaussian_kde.resample does something similar, but I'm not sure if it implements the same procedure as the Java type I'm familiar with.


回答1:


import numpy as np
import scipy.stats
import matplotlib.pyplot as plt

# This represents the original "empirical" sample -- I fake it by
# sampling from a normal distribution
orig_sample_data = np.random.normal(size=10000)

# Generate a KDE from the empirical sample
sample_pdf = scipy.stats.gaussian_kde(orig_sample_data)

# Sample new datapoints from the KDE
new_sample_data = sample_pdf.resample(10000).T[:,0]

# Histogram of initial empirical sample
cnts, bins, p = plt.hist(orig_sample_data, label='original sample', bins=100,
                         histtype='step', linewidth=1.5, density=True)

# Histogram of datapoints sampled from KDE
plt.hist(new_sample_data, label='sample from KDE', bins=bins,
         histtype='step', linewidth=1.5, density=True)

# Visualize the kde itself
y_kde = sample_pdf(bins)
plt.plot(bins, y_kde, label='KDE')
plt.legend()
plt.show(block=False)

new_sample_data should be drawn from roughly the same distribution as the original data (to the degree that the KDE is a good approximation to the original distribution).



来源:https://stackoverflow.com/questions/35434363/python-generate-random-values-from-empirical-distribution

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!