C++11 random number distributions are not consistent across platforms — what alternatives are there?

◇◆丶佛笑我妖孽 提交于 2019-11-27 22:58:02

I have created my own C++11 distributions:

template <typename T>
class UniformRealDistribution
{
 public:
    typedef T result_type;

 public:
    UniformRealDistribution(T _a = 0.0, T _b = 1.0)
        :m_a(_a),
         m_b(_b)
    {}

    void reset() {}

    template <class Generator>
    T operator()(Generator &_g)
    {
        double dScale = (m_b - m_a) / ((T)(_g.max() - _g.min()) + (T)1); 
        return (_g() - _g.min()) * dScale  + m_a;
    }

    T a() const {return m_a;}
    T b() const {return m_b;}

 protected:
    T       m_a;
    T       m_b;
};

template <typename T>
class NormalDistribution
{
 public:
    typedef T result_type;

 public:
    NormalDistribution(T _mean = 0.0, T _stddev = 1.0)
        :m_mean(_mean),
         m_stddev(_stddev)
    {}

    void reset()
    {
        m_distU1.reset();
    }

    template <class Generator>
    T operator()(Generator &_g)
    {
        // Use Box-Muller algorithm
        const double pi = 3.14159265358979323846264338327950288419716939937511;
        double u1 = m_distU1(_g);
        double u2 = m_distU1(_g);
        double r = sqrt(-2.0 * log(u1));
        return m_mean + m_stddev * r * sin(2.0 * pi * u2);
    }

    T mean() const {return m_mean;}
    T stddev() const {return m_stddev;}

protected:
    T                           m_mean;
    T                           m_stddev;
    UniformRealDistribution<T>  m_distU1;
};

The uniform distribution seems to deliver good results and the normal distribution delivers very good results:

100000 values -> 68.159% within 1 sigma; 95.437% within 2 sigma; 99.747% within 3 sigma

The normal distribution uses the Box-Muller method, which according to what I have read so far, is not the fastest method, but it runs more that fast enough for my application.

Both the uniform and normal distributions should work with any C++11 engine (tested with std::mt19937) and provides the same sequence on all platforms, which is exactly what I wanted.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!