How to slice one MultiIndex DataFrame with the MultiIndex of another

主宰稳场 提交于 2019-11-27 21:19:02

Here is a way to get this slice:

df.sort_index(inplace=True)
idx = pd.IndexSlice
df.loc[idx[:, ('foo','bar'), 'can'], :]

yielding

           hi
a b   c      
1 bar can   3
  foo can   1
2 bar can   7
  foo can   5
3 bar can  11
  foo can   9

Note that you might need to sort MultiIndex before you can slice it. Well pandas is kind enough to warn if you need to do it:

KeyError: 'MultiIndex Slicing requires the index to be fully lexsorted tuple len (3), lexsort depth (1)'

You can read more on how to use slicers in the docs

If for some reason using slicers is not an option here is a way to get the same slice using .isin() method:

df[df.index.get_level_values('b').isin(ix_use.get_level_values(0)) & df.index.get_level_values('c').isin(ix_use.get_level_values(1))]

Which is clearly not as concise.

UPDATE:

For the conditions that you have updated here is a way to do it:

cond1 = (df.index.get_level_values('b').isin(['foo'])) & (df.index.get_level_values('c').isin(['can']))
cond2 = (df.index.get_level_values('b').isin(['bar'])) & (df.index.get_level_values('c').isin(['baz']))
df[cond1 | cond2]

producing:

           hi
a b   c      
1 foo can   1
  bar baz   2
2 foo can   5
  bar baz   6
3 foo can   9
  bar baz  10
YaOzI

I would recommend the query() method just like in this Q&A.

Simply using this, which I think is a more natural way to express:

In [27]: df.query("(b == 'foo' and c == 'can') or (b == 'bar' and c == 'baz')")
Out[27]: 
           hi
a b   c      
1 foo can   1
  bar baz   2
2 foo can   5
  bar baz   6
3 foo can   9
  bar baz  10

I find it interesting that this doesn't work:

In [45]: df.loc[(idx[:, 'foo', 'can'], idx[:, 'bar', 'baz']), ]
Out[45]: 
           hi
a b   c      
1 bar baz   2
      can   3
  foo baz   0
      can   1
2 bar baz   6
      can   7
  foo baz   4
      can   5
3 bar baz  10
      can  11
  foo baz   8
      can   9

It sort of looks like it "should", somehow. In any case, here's a reasonable workaround:

Let's assume the tuples you want to slice by are in the index of another DataFrame (since it sounds like they probably are in your case!).

In [53]: ix_use = pd.MultiIndex.from_tuples([('foo', 'can'), ('bar', 'baz')], names=['b', 'c'])
In [55]: other = pd.DataFrame(dict(a=1), index=ix_use)
In [56]: other
Out[56]: 
         a
b   c     
foo can  1
bar baz  1

Now to slice df by the index of other we can use the fact that .loc/.ix allow you to give a list of tuples (see the last example here).

First let's build the list of tuples we want:

In [13]: idx = [(x, ) + y for x in df.index.levels[0] for y in other.index.values]
In [14]: idx
Out[14]: 
[(1, 'foo', 'can'),
 (1, 'bar', 'baz'),
 (2, 'foo', 'can'),
 (2, 'bar', 'baz'),
 (3, 'foo', 'can'),
 (3, 'bar', 'baz')]

Now we can pass this list to .ix or .loc:

In [17]: df.ix[idx]
Out[17]: 
           hi
a b   c      
1 foo can   1
  bar baz   2
2 foo can   5
  bar baz   6
3 foo can   9
  bar baz  10
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!