Heatmap from columns in pandas dataframe

我们两清 提交于 2020-07-06 11:51:35

问题


I try to generate a heatmap from a pandas dataframe by days and hours of the day (X-> days, Y->hours). The result should be something like this:

the data source is a table in postgres:

   id    |       created_at       
---------+------------------------
 2558145 | 2017-03-02 11:31:15+01
 2558146 | 2017-03-02 11:31:46+01
 2558147 | 2017-03-02 11:32:28+01
 2558148 | 2017-03-02 11:32:57+01
....

here is my code the regroup the data by hour.

import pandas as pd
from sqlalchemy import create_engine
engine = create_engine('postgresql://postgres:postgres@localhost:5432/bla')
import datetime
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
from matplotlib.dates import date2num
import seaborn as sns

df = pd.read_sql_query("""
SELECT created_at, 1 as print
FROM foo
WHERE created_at > '2017-02-01'
AND created_at < '2017-03-01'""", con=engine)

df['created_at'] = pd.to_datetime(df['created_at'])
df.index = df['created_at']

df = df.resample('H')['print'].sum()
df.fillna(0, inplace=True)

print(df.head())

created_at
2017-02-01 07:00:00+00:00      1.0
2017-02-01 08:00:00+00:00    152.0
2017-02-01 09:00:00+00:00    101.0
2017-02-01 10:00:00+00:00     92.0
2017-02-01 11:00:00+00:00    184.0
Freq: H, Name: print, dtype: float64

The result looks fine but I can not figure out how to plot this dataframe?


回答1:


A heatmap is a two dimensional plot, which maps x and y pairs to a value. This means that the input to the heatmap must be a 2D array.

Here you would want to have the columns of the array denote days and the rows to denote the hours. As a first step we would need to have days and hours in two different columns of the dataframe. One could then reshape those columns to 2D arrays, which would require to know how many days and hours there are. If would also require that there is actually an entry for each day/hour pair.
Without this restriction we can alternatively use a pivot_table to aggregate the values in a table. This is shown in the following solution.

import pandas as pd
import numpy as np; np.random.seed(0)
import seaborn.apionly as sns
import matplotlib.pyplot as plt

# create dataframe with datetime as index and aggregated (frequency) values
date = pd.date_range('2017-02-23', periods=10*12, freq='2h')
freq = np.random.poisson(lam=2, size=(len(date)))
df = pd.DataFrame({"freq":freq}, index=date)

# add a column hours and days
df["hours"] = df.index.hour
df["days"] = df.index.map(lambda x: x.strftime('%b-%d'))     
# create pivot table, days will be columns, hours will be rows
piv = pd.pivot_table(df, values="freq",index=["hours"], columns=["days"], fill_value=0)
#plot pivot table as heatmap using seaborn
ax = sns.heatmap(piv, square=True)
plt.setp( ax.xaxis.get_majorticklabels(), rotation=90 )
plt.tight_layout()
plt.show()

For plotting you may also use a matplotlib imshow plot as follows:

fig, ax = plt.subplots()
im = ax.imshow(piv, cmap="Greens")
fig.colorbar(im, ax=ax)

ax.set_xticks(range(len(piv.columns)))
ax.set_yticks(range(len(piv.index)))
ax.set_xticklabels(piv.columns, rotation=90)
ax.set_yticklabels(piv.index)
ax.set_xlabel("Days")
ax.set_ylabel("Hours")

plt.tight_layout()
plt.show()



来源:https://stackoverflow.com/questions/43330205/heatmap-from-columns-in-pandas-dataframe

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!