How to melt pairwise.wilcox.test output using dplyr?

对着背影说爱祢 提交于 2020-06-09 05:44:45

问题


I want to apply pairwise.wilcox.test function using dplyr package. I am using the following code

library(tidyverse)
tbl_df(df)%>% 
  pivot_longer(cols = -Class, names_to = "Wavelengths", values_to = "value") %>% 
  group_by(Wavelengths) %>% 
  summarize(pairwise.wilcox.test(value, as.factor(Class), p.adjust.method="bonf")$p.value)

It is giving me the following error

Error: Column pairwise.wilcox.test(try$value, as.factor(try$Class), p.adjust.method = "bonf")$p.value must be length 1 (a summary value), not 16

How to eliminate the error?

Update

As suggested by @duckmayr, I have updated my dplyr package (Newest version 1.0.0) and the error is not coming and it is giving me the following output

#> `summarise()` regrouping output by 'Wavelengths' (override with `.groups` argument)
#> # A tibble: 16 x 2
#> # Groups:   Wavelengths [4]
#>    Wavelengths pval[,1]    [,2]   [,3]   [,4]
#>    <chr>          <dbl>   <dbl>  <dbl>  <dbl>
#>  1 WV_350        1      NA      NA     NA    
#>  2 WV_350        0.0794  0.0794 NA     NA    
#>  3 WV_350        0.0794  0.0794  1     NA    
#>  4 WV_350        0.0794  0.0794  0.749  0.556
#>  5 WV_351        1      NA      NA     NA    
#>  6 WV_351        0.0794  0.0794 NA     NA    
#>  7 WV_351        0.0794  0.0794  1     NA    
#>  8 WV_351        0.0794  0.0794  0.556  0.556
#>  9 WV_352        1      NA      NA     NA    
#> 10 WV_352        0.0794  0.0794 NA     NA    
#> 11 WV_352        0.0794  0.0794  1     NA    
#> 12 WV_352        0.0794  0.0794  0.556  0.749
#> 13 WV_353        1      NA      NA     NA    
#> 14 WV_353        0.0794  0.0794 NA     NA    
#> 15 WV_353        0.0794  0.0794  1     NA    
#> 16 WV_353        0.0794  0.0794  0.556  0.317

As you can see from the above that the output is not coming in proper shape i.e. one more column of class should come. As of now, it is showing only class 1. I want to melt the output farther like Wavelengths Group1 Group2 pvalue, so that the output comes in a better format.

Data

df = structure(list(Class = c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 
3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5), WV_350 = c(0.0196, 0.0206, 
0.023, 0.0264, 0.029, 0.0201, 0.0181, 0.0216, 0.0225, 0.019, 
0.0165, 0.0121, 0.0129, 0.0123, 0.0149, 0.0137, 0.0116, 0.0151, 
0.0138, 0.0167, 0.0149, 0.0112, 0.0107, 0.01, 0.0099), WV_351 = c(0.0197, 
0.0206, 0.0229, 0.0265, 0.029, 0.0199, 0.0183, 0.0216, 0.0225, 
0.0187, 0.0165, 0.0118, 0.0127, 0.0122, 0.0148, 0.0138, 0.0114, 
0.0145, 0.0132, 0.0164, 0.0144, 0.0108, 0.01, 0.0093, 0.0095), 
    WV_352 = c(0.0199, 0.0207, 0.0233, 0.027, 0.0299, 0.0203, 
    0.0186, 0.0219, 0.0232, 0.019, 0.0169, 0.0124, 0.0133, 0.0126, 
    0.0152, 0.0145, 0.0118, 0.0148, 0.0132, 0.0168, 0.0148, 0.0111, 
    0.0102, 0.0096, 0.0098), WV_353 = c(0.0204, 0.0213, 0.0238, 
    0.0277, 0.0307, 0.0208, 0.0194, 0.0229, 0.0241, 0.0199, 0.0173, 
    0.013, 0.0142, 0.0134, 0.0161, 0.0152, 0.0126, 0.0153, 0.0137, 
    0.0175, 0.0151, 0.0116, 0.0105, 0.01, 0.0098)), row.names = c(NA, 
25L), class = "data.frame")  

回答1:


A bit verbose and Im sure it could be made more efficient:

library(tidyverse)
library(broom)
res <- 
  tbl_df(df)%>% 
  pivot_longer(cols = -Class, names_to = "Wavelengths", values_to = "value") %>% 
  group_by(Wavelengths) %>% 
  summarise(pw_wt = list(pairwise.wilcox.test(value,as.factor(Class),
                                              p.adjust.method = "bonf")$p.value)) %>% 
  ungroup() %>% 
  mutate(pw_wt_t = map(pw_wt, broom::tidy)) %>% 
  unnest(pw_wt_t)


来源:https://stackoverflow.com/questions/62129863/how-to-melt-pairwise-wilcox-test-output-using-dplyr

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!