问题
I have a time series that looks like this (a slice):
Date 3 7 10
2015-02-13 0.00021 -0.00078927 0.00407473
2015-02-16 0.0 -0.00343163 0.0
2015-02-17 0.0 0.0049406 0.00159753
2015-02-18 0.00117 -0.00123565 -0.00031423
2015-02-19 0.00091 -0.00253578 -0.00106207
2015-02-20 0.00086 0.00113476 0.00612649
2015-02-23 -0.0011 -0.00403307 -0.00030327
2015-02-24 -0.00179 0.00043229 0.00275874
2015-02-25 0.00035 0.00186069 -0.00076578
2015-02-26 -0.00032 -0.01435613 -0.00147597
2015-02-27 -0.00288 -0.0001786 -0.00295631
For calculating the EWMA Volatility, I implemented the following functions:
def CalculateEWMAVol (ReturnSeries, Lambda):
SampleSize = len(ReturnSeries)
Average = ReturnSeries.mean()
e = np.arange(SampleSize-1,-1,-1)
r = np.repeat(Lambda,SampleSize)
vecLambda = np.power(r,e)
sxxewm = (np.power(ReturnSeries-Average,2)*vecLambda).sum()
Vart = sxxewm/vecLambda.sum()
EWMAVol = math.sqrt(Vart)
return (EWMAVol)
def CalculateVol (R, Lambda):
Vol = pd.Series(index=R.columns)
for facId in R.columns:
Vol[facId] = CalculateEWMAVol(R[facId], Lambda)
return (Vol)
The function works properly, but with a large time series the process gets slow because of the for loop.
Is there another approach to calling this function over the series?
回答1:
I think your function to be the most technically right approach. I just wanted to suggest to use 'apply', instead of doing a 'for' yourself.
Is there another approach to calling this function over the series?
Vol[facId] = R.apply(CalculateEWMAVol(R[facId], Lambda)
I hope it can be useful.
回答2:
I guess what you really asked is to avoid using loop, but the pandas apply() does not solve this problem, because you still loop around each column in your dataframe. I explored this topic a while ago, after exhausting my options, I end up converting a MatLab matrix calculation to Python code and it does the vol with decay calculation perfectly in matrix form. Code in the following, assuming df_tmp is the time series that has multiple columns for each price index.
decay_factor = 0.94
decay_f = np.arange(df_tmp.shape[0], 0, -1)
decay_f = decay_factor ** decay_f
decay_sum = sum(decay_f)
w = decay_f / decay_sum
avg_weight = np.ones(df_tmp.shape[0]) / df_tmp.shape[0]
T, N = df_tmp.shape
temp = df_tmp - df_tmp * np.tile(avg_weight, (4422, 1)).T
temp = np.dot(temp.T, temp * np.tile(w, (4422, 1)).T)
temp = 0.5 * (temp + temp.T)
R = np.diag(temp)
sigma = np.sqrt(R)
R = temp / np.sqrt(np.dot(R, R.T))
sigma is volatility, R is corr matrix and temp is covariance matrix.
来源:https://stackoverflow.com/questions/42305587/ewma-volatility-in-python-avoiding-loops