How do I determine the standard deviation (stddev) of a set of values?

落花浮王杯 提交于 2019-11-26 04:10:12

问题


I need to know if a number compared to a set of numbers is outside of 1 stddev from the mean, etc..


回答1:


While the sum of squares algorithm works fine most of the time, it can cause big trouble if you are dealing with very large numbers. You basically may end up with a negative variance...

Plus, don't never, ever, ever, compute a^2 as pow(a,2), a * a is almost certainly faster.

By far the best way of computing a standard deviation is Welford's method. My C is very rusty, but it could look something like:

public static double StandardDeviation(List<double> valueList)
{
    double M = 0.0;
    double S = 0.0;
    int k = 1;
    foreach (double value in valueList) 
    {
        double tmpM = M;
        M += (value - tmpM) / k;
        S += (value - tmpM) * (value - M);
        k++;
    }
    return Math.Sqrt(S / (k-2));
}

If you have the whole population (as opposed to a sample population), then use return Math.Sqrt(S / (k-1));.

EDIT: I've updated the code according to Jason's remarks...

EDIT: I've also updated the code according to Alex's remarks...




回答2:


10 times faster solution than Jaime's, but be aware that, as Jaime pointed out:

"While the sum of squares algorithm works fine most of the time, it can cause big trouble if you are dealing with very large numbers. You basically may end up with a negative variance"

If you think you are dealing with very large numbers or a very large quantity of numbers, you should calculate using both methods, if the results are equal, you know for sure that you can use "my" method for you case.

    public static double StandardDeviation(double[] data)
    {
        double stdDev = 0;
        double sumAll = 0;
        double sumAllQ = 0;

        //Sum of x and sum of x²
        for (int i = 0; i < data.Length; i++)
        {
            double x = data[i];
            sumAll += x;
            sumAllQ += x * x;
        }

        //Mean (not used here)
        //double mean = 0;
        //mean = sumAll / (double)data.Length;

        //Standard deviation
        stdDev = System.Math.Sqrt(
            (sumAllQ -
            (sumAll * sumAll) / data.Length) *
            (1.0d / (data.Length - 1))
            );

        return stdDev;
    }



回答3:


The accepted answer by Jaime is great, except you need to divide by k-2 in the last line (you need to divide by "number_of_elements-1"). Better yet, start k at 0:

public static double StandardDeviation(List<double> valueList)
{
    double M = 0.0;
    double S = 0.0;
    int k = 0;
    foreach (double value in valueList) 
    {
        k++;
        double tmpM = M;
        M += (value - tmpM) / k;
        S += (value - tmpM) * (value - M);
    }
    return Math.Sqrt(S / (k-1));
}



回答4:


The Math.NET library provides this for you to of the box.

PM> Install-Package MathNet.Numerics

var populationStdDev = new List<double>(1d, 2d, 3d, 4d, 5d).PopulationStandardDeviation();

var sampleStdDev = new List<double>(2d, 3d, 4d).StandardDeviation();

See PopulationStandardDeviation for more information.




回答5:


Code snippet:

public static double StandardDeviation(List<double> valueList)
{
    if (valueList.Count < 2) return 0.0;
    double sumOfSquares = 0.0;
    double average = valueList.Average(); //.NET 3.0
    foreach (double value in valueList) 
    {
        sumOfSquares += Math.Pow((value - average), 2);
    }
    return Math.Sqrt(sumOfSquares / (valueList.Count - 1));
}



回答6:


You can avoid making two passes over the data by accumulating the mean and mean-square

cnt = 0
mean = 0
meansqr = 0
loop over array
    cnt++
    mean += value
    meansqr += value*value
mean /= cnt
meansqr /= cnt

and forming

sigma = sqrt(meansqr - mean^2)

A factor of cnt/(cnt-1) is often appropriate as well.

BTW-- The first pass over the data in Demi and McWafflestix answers are hidden in the calls to Average. That kind of thing is certainly trivial on a small list, but if the list exceed the size of the cache, or even the working set, this gets to be a bid deal.




回答7:


I found that Rob's helpful answer didn't quite match what I was seeing using excel. To match excel, I passed the Average for valueList in to the StandardDeviation calculation.

Here is my two cents... and clearly you could calculate the moving average (ma) from valueList inside the function - but I happen to have already before needing the standardDeviation.

public double StandardDeviation(List<double> valueList, double ma)
{
   double xMinusMovAvg = 0.0;
   double Sigma = 0.0;
   int k = valueList.Count;


  foreach (double value in valueList){
     xMinusMovAvg = value - ma;
     Sigma = Sigma + (xMinusMovAvg * xMinusMovAvg);
  }
  return Math.Sqrt(Sigma / (k - 1));
}       



回答8:


With Extension methods.

using System;
using System.Collections.Generic;

namespace SampleApp
{
    internal class Program
    {
        private static void Main()
        {
            List<double> data = new List<double> {1, 2, 3, 4, 5, 6};

            double mean = data.Mean();
            double variance = data.Variance();
            double sd = data.StandardDeviation();

            Console.WriteLine("Mean: {0}, Variance: {1}, SD: {2}", mean, variance, sd);
            Console.WriteLine("Press any key to continue...");
            Console.ReadKey();
        }
    }

    public static class MyListExtensions
    {
        public static double Mean(this List<double> values)
        {
            return values.Count == 0 ? 0 : values.Mean(0, values.Count);
        }

        public static double Mean(this List<double> values, int start, int end)
        {
            double s = 0;

            for (int i = start; i < end; i++)
            {
                s += values[i];
            }

            return s / (end - start);
        }

        public static double Variance(this List<double> values)
        {
            return values.Variance(values.Mean(), 0, values.Count);
        }

        public static double Variance(this List<double> values, double mean)
        {
            return values.Variance(mean, 0, values.Count);
        }

        public static double Variance(this List<double> values, double mean, int start, int end)
        {
            double variance = 0;

            for (int i = start; i < end; i++)
            {
                variance += Math.Pow((values[i] - mean), 2);
            }

            int n = end - start;
            if (start > 0) n -= 1;

            return variance / (n);
        }

        public static double StandardDeviation(this List<double> values)
        {
            return values.Count == 0 ? 0 : values.StandardDeviation(0, values.Count);
        }

        public static double StandardDeviation(this List<double> values, int start, int end)
        {
            double mean = values.Mean(start, end);
            double variance = values.Variance(mean, start, end);

            return Math.Sqrt(variance);
        }
    }
}



回答9:


/// <summary>
/// Calculates standard deviation, same as MATLAB std(X,0) function
/// <seealso cref="http://www.mathworks.co.uk/help/techdoc/ref/std.html"/>
/// </summary>
/// <param name="values">enumumerable data</param>
/// <returns>Standard deviation</returns>
public static double GetStandardDeviation(this IEnumerable<double> values)
{
    //validation
    if (values == null)
        throw new ArgumentNullException();

    int lenght = values.Count();

    //saves from devision by 0
    if (lenght == 0 || lenght == 1)
        return 0;

    double sum = 0.0, sum2 = 0.0;

    for (int i = 0; i < lenght; i++)
    {
        double item = values.ElementAt(i);
        sum += item;
        sum2 += item * item;
    }

    return Math.Sqrt((sum2 - sum * sum / lenght) / (lenght - 1));
}



回答10:


The trouble with all the other answers is that they assume you have your data in a big array. If your data is coming in on the fly, this would be a better approach. This class works regardless of how or if you store your data. It also gives you the choice of the Waldorf method or the sum-of-squares method. Both methods work using a single pass.

public final class StatMeasure {
  private StatMeasure() {}

  public interface Stats1D {

    /** Add a value to the population */
    void addValue(double value);

    /** Get the mean of all the added values */
    double getMean();

    /** Get the standard deviation from a sample of the population. */
    double getStDevSample();

    /** Gets the standard deviation for the entire population. */
    double getStDevPopulation();
  }

  private static class WaldorfPopulation implements Stats1D {
    private double mean = 0.0;
    private double sSum = 0.0;
    private int count = 0;

    @Override
    public void addValue(double value) {
      double tmpMean = mean;
      double delta = value - tmpMean;
      mean += delta / ++count;
      sSum += delta * (value - mean);
    }

    @Override
    public double getMean() { return mean; }

    @Override
    public double getStDevSample() { return Math.sqrt(sSum / (count - 1)); }

    @Override
    public double getStDevPopulation() { return Math.sqrt(sSum / (count)); }
  }

  private static class StandardPopulation implements Stats1D {
    private double sum = 0.0;
    private double sumOfSquares = 0.0;
    private int count = 0;

    @Override
    public void addValue(double value) {
      sum += value;
      sumOfSquares += value * value;
      count++;
    }

    @Override
    public double getMean() { return sum / count; }

    @Override
    public double getStDevSample() {
      return (float) Math.sqrt((sumOfSquares - ((sum * sum) / count)) / (count - 1));
    }

    @Override
    public double getStDevPopulation() {
      return (float) Math.sqrt((sumOfSquares - ((sum * sum) / count)) / count);
    }
  }

  /**
   * Returns a way to measure a population of data using Waldorf's method.
   * This method is better if your population or values are so large that
   * the sum of x-squared may overflow. It's also probably faster if you
   * need to recalculate the mean and standard deviation continuously,
   * for example, if you are continually updating a graphic of the data as
   * it flows in.
   *
   * @return A Stats1D object that uses Waldorf's method.
   */
  public static Stats1D getWaldorfStats() { return new WaldorfPopulation(); }

  /**
   * Return a way to measure the population of data using the sum-of-squares
   * method. This is probably faster than Waldorf's method, but runs the
   * risk of data overflow.
   *
   * @return A Stats1D object that uses the sum-of-squares method
   */
  public static Stats1D getSumOfSquaresStats() { return new StandardPopulation(); }
}



回答11:


We may be able to use statistics module in Python. It has stedev() and pstdev() commands to calculate standard deviation of sample and population respectively.

details here: https://www.geeksforgeeks.org/python-statistics-stdev/

import statistics as st print(st.ptdev(dataframe['column name']))




回答12:


This is Population standard deviation

private double calculateStdDev(List<double> values)
{
    double average = values.Average();
    return Math.Sqrt((values.Select(val => (val - average) * (val - average)).Sum()) / values.Count);
}

For Sample standard deviation, just change [values.Count] to [values.Count -1] in above code.

Make sure you don't have only 1 data point in your set.



来源:https://stackoverflow.com/questions/895929/how-do-i-determine-the-standard-deviation-stddev-of-a-set-of-values

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!