问题
For example, I have a table
A
id price sum
1 2 0
1 6 0
1 4 0
2 2 0
2 10 0
2 1 0
2 5 0
3 1 0
3 5 0
What I want is like (the last row of sum
should be the sum of price
of a group)
id price sum
1 2 0
1 6 0
1 4 12
2 2 0
2 10 0
2 1 0
2 5 18
3 1 0
3 5 6
What I can do is find out the sum using
A['price'].groupby(A['id']).transform('sum')
However I don't know how to assign this to the sum
column (last row).
Thanks
回答1:
Use last_valid_index
to locate rows to fill
g = df.groupby('id')
l = pd.DataFrame.last_valid_index
df.loc[g.apply(l), 'sum'] = g.price.sum().values
df
id price sum
0 1 2 0
1 1 6 0
2 1 4 12
3 2 2 0
4 2 10 0
5 2 1 0
6 2 5 18
7 3 1 0
8 3 5 6
回答2:
You could do this:
df.assign(sum=df.groupby('id')['price'].transform('sum').drop_duplicates(keep='last')).fillna(0)
OR
df['sum'] = (df.groupby('id')['price']
.transform('sum')
.mask(df.id.duplicated(keep='last'), 0))
Output:
id price sum
0 1 2 0.0
1 1 6 0.0
2 1 4 12.0
3 2 2 0.0
4 2 10 0.0
5 2 1 0.0
6 2 5 18.0
7 3 1 0.0
8 3 5 6.0
来源:https://stackoverflow.com/questions/49018644/pandas-assign-the-groupby-sum-value-to-the-last-row-in-the-original-table