问题
I'm trying to implement a thermostat control using MPC and GEKKO.
The state variable (temperature) should be within a lower and upper pre-specified temp values , temp_low
and temp_upper
in the code below.
Both bound vary along the day: one value per hour.
The objective function is the cost-to-go of using the heating. The price also changes along the day, TOU
below. T_external
is the room's exterior temperature that plays a role in the differential equation.
How can implement this so that it optimizes?
This is my attempt:
from gekko import GEKKO
import numpy as np
m = GEKKO(remote=False)
m.time = np.linspace(0,23,24)
#initialize variables
T_external = [50.,50.,50.,50.,45.,45.,45.,60.,60.,63.,64.,45.,45.,50.,52.,53.,53.,54.,54.,53.,52.,51.,50.,45.]
temp_low = [55.,55.,55.,55.,55.,55.,55.,68.,68.,68.,68.,55.,55.,68.,68.,68.,68.,55.,55.,55.,55.,55.,55.,55.]
temp_upper = [75.,75.,75.,75.,75.,75.,75.,70.,70.,70.,70.,75.,75.,70.,70.,70.,70.,75.,75.,75.,75.,75.,75.,75.]
TOU = [0.05,0.05,0.05,0.05,0.05,0.05,0.05,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,0.05,0.05,0.05]
b = m.Param(value=1.)
k = m.Param(value=0.05)
T_e = m.Param(value=T_external)
u = m.MV(value=[0]*24, lb=[0.0]*24, ub=[1.]*24)
u.STATUS = 1 # allow optimizer to change
# Controlled Variable
T = m.SV(value=[60]*24, lb=temp_low, ub=temp_upper)
m.Equation(T.dt() == k*(T_e-T) + b*u)
m.Obj(np.dot(TOU,u))
m.options.IMODE = 6
m.solve(debug=True)
When I run this I get:
@error: Model Expression
*** Error in syntax of function string: Missing operator
Position: 4
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
?
回答1:
Gekko needs the constaints as inequality expressions where the variable T
is compared to the upper TH
or lower TL
values. If you have b=1.
, it leads to an infeasible solution because the heater isn't powerful enough to maintain the temperature within the upper and lower limits. I changed the value to b=10
to get a feasible solution.
from gekko import GEKKO
import numpy as np
m = GEKKO(remote=False)
m.time = np.linspace(0,23,24)
#initialize variables
T_external = [50.,50.,50.,50.,45.,45.,45.,60.,60.,63.,\
64.,45.,45.,50.,52.,53.,53.,54.,54.,\
53.,52.,51.,50.,45.]
temp_low = [55.,55.,55.,55.,55.,55.,55.,68.,68.,68.,68.,\
55.,55.,68.,68.,68.,68.,55.,55.,55.,55.,55.,55.,55.]
temp_upper = [75.,75.,75.,75.,75.,75.,75.,70.,70.,70.,70.,75.,\
75.,70.,70.,70.,70.,75.,75.,75.,75.,75.,75.,75.]
TOU_v = [0.05,0.05,0.05,0.05,0.05,0.05,0.05,200.,200.,200.,200.,\
200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,0.05,\
0.05,0.05]
b = m.Param(value=10.)
k = m.Param(value=0.05)
T_e = m.Param(value=T_external)
TL = m.Param(value=temp_low)
TH = m.Param(value=temp_upper)
TOU = m.Param(value=TOU_v)
u = m.MV(lb=0, ub=1)
u.STATUS = 1 # allow optimizer to change
# Controlled Variable
T = m.SV(value=60)
m.Equations([T>=TL,T<=TH])
m.Equation(T.dt() == k*(T_e-T) + b*u)
m.Minimize(TOU*u)
m.options.IMODE = 6
m.solve(disp=True,debug=True)
A potentially better solution is to set up soft constraints by redefining the limits as an error. You can minimize the error to stay within the limits. Even if it can't stay within the limits, the optimizer will do the best it can to minimize the infeasibility. This also allows you to trade-off multiple objectives simultaneously such as between comfort and cost.
from gekko import GEKKO
import numpy as np
m = GEKKO(remote=False)
m.time = np.linspace(0,23,24)
#initialize variables
T_external = [50.,50.,50.,50.,45.,45.,45.,60.,60.,63.,\
64.,45.,45.,50.,52.,53.,53.,54.,54.,\
53.,52.,51.,50.,45.]
temp_low = [55.,55.,55.,55.,55.,55.,55.,68.,68.,68.,68.,\
55.,55.,68.,68.,68.,68.,55.,55.,55.,55.,55.,55.,55.]
temp_upper = [75.,75.,75.,75.,75.,75.,75.,70.,70.,70.,70.,75.,\
75.,70.,70.,70.,70.,75.,75.,75.,75.,75.,75.,75.]
TOU_v = [0.05,0.05,0.05,0.05,0.05,0.05,0.05,200.,200.,200.,200.,\
200.,200.,200.,200.,200.,200.,200.,200.,200.,200.,0.05,\
0.05,0.05]
b = m.Param(value=10.)
k = m.Param(value=0.05)
T_e = m.Param(value=T_external)
TL = m.Param(value=temp_low)
TH = m.Param(value=temp_upper)
TOU = m.Param(value=TOU_v)
u = m.MV(lb=0, ub=1)
u.STATUS = 1 # allow optimizer to change
# Controlled Variable
T = m.SV(value=60)
# Soft constraints
eH = m.CV(value=0)
eL = m.CV(value=0)
eH.SPHI=0; eH.WSPHI=100; eH.WSPLO=0 ; eH.STATUS = 1
eL.SPLO=0; eL.WSPHI=0 ; eL.WSPLO=100; eL.STATUS = 1
m.Equations([eH==T-TH,eL==T-TL])
m.Equation(T.dt() == k*(T_e-T) + b*u)
m.Minimize(TOU*u)
m.options.IMODE = 6
m.solve(disp=True,debug=True)
import matplotlib.pyplot as plt
plt.subplot(2,1,1)
plt.plot(m.time,temp_low,'k--')
plt.plot(m.time,temp_upper,'k--')
plt.plot(m.time,T.value,'r-')
plt.ylabel('Temperature')
plt.subplot(2,1,2)
plt.step(m.time,u.value,'b:')
plt.ylabel('Heater')
plt.xlabel('Time (hr)')
plt.show()
来源:https://stackoverflow.com/questions/60761440/variable-bounds-in-mpc-with-gekko