堆
堆和优先队列 Heap and Priority Queue
普通队列:先进先出,后进后出
优先队列:出队顺序和入队顺序无关;和优先级相关
使用数组实现优先队列时间复杂度:O(n^2),使用堆的时间复杂度:O(nlgn)
最大堆是一颗完全的二叉树,并且任何一个节点都不大于它的父亲节点
所以我们可以使用数组存储二叉堆
构造一个堆,并向里面添加和删除元素

package bobo.algo;
import java.util.*;
import java.lang.*;
// 在堆的有关操作中,需要比较堆中元素的大小,所以Item需要extends Comparable
public class MaxHeap<Item extends Comparable> {
protected Item[] data;
protected int count;
protected int capacity;
// 构造函数, 构造一个空堆, 可容纳capacity个元素
public MaxHeap(int capacity){
data = (Item[])new Comparable[capacity+1];
count = 0;
this.capacity = capacity;
}
// 构造函数, 通过一个给定数组创建一个最大堆
// 该构造堆的过程, 时间复杂度为O(n)
public MaxHeap(Item arr[]){
int n = arr.length;
data = (Item[])new Comparable[n+1];
capacity = n;
for( int i = 0 ; i < n ; i ++ )
data[i+1] = arr[i];
count = n;
for( int i = count/2 ; i >= 1 ; i -- )//第一个不是叶子节点的节点
shiftDown(i);
}
// 返回堆中的元素个数
public int size(){
return count;
}
// 返回一个布尔值, 表示堆中是否为空
public boolean isEmpty(){
return count == 0;
}
// 像最大堆中插入一个新的元素 item
public void insert(Item item){
assert count + 1 <= capacity;
data[count+1] = item;
count ++;
shiftUp(count);
}
// 从最大堆中取出堆顶元素, 即堆中所存储的最大数据
public Item extractMax(){
assert count > 0;
Item ret = data[1];
swap( 1 , count );
count --;
shiftDown(1);
return ret;
}
// 获取最大堆中的堆顶元素
public Item getMax(){
assert( count > 0 );
return data[1];
}
// 交换堆中索引为i和j的两个元素
private void swap(int i, int j){
Item t = data[i];
data[i] = data[j];
data[j] = t;
}
//********************
//* 最大堆核心辅助函数
//********************
private void shiftUp(int k){
while( k > 1 && data[k/2].compareTo(data[k]) < 0 ){
swap(k, k/2);
k /= 2;
}
}
private void shiftDown(int k){
while( 2*k <= count ){
int j = 2*k; // 在此轮循环中,data[k]和data[j]交换位置
if( j+1 <= count && data[j+1].compareTo(data[j]) > 0 )
j ++;
// data[j] 是 data[2*k]和data[2*k+1]中的最大值
if( data[k].compareTo(data[j]) >= 0 ) break;
swap(k, j);
k = j;
}
}
// 测试 MaxHeap
public static void main(String[] args) {
MaxHeap<Integer> maxHeap = new MaxHeap<Integer>(100);
int N = 100; // 堆中元素个数
int M = 100; // 堆中元素取值范围[0, M)
for( int i = 0 ; i < N ; i ++ )
maxHeap.insert( new Integer((int)(Math.random() * M)) );
Integer[] arr = new Integer[N];
// 将maxheap中的数据逐渐使用extractMax取出来
// 取出来的顺序应该是按照从大到小的顺序取出来的
for( int i = 0 ; i < N ; i ++ ){
arr[i] = maxHeap.extractMax();
System.out.print(arr[i] + " ");
}
System.out.println();
// 确保arr数组是从大到小排列的
for( int i = 1 ; i < N ; i ++ )
assert arr[i-1] >= arr[i];
}
}

现在的这个完全二叉树还不是一个最大堆,因为并不满足对所有的节点,它的父节点都比自身大这样的一个性质
对一个完全二叉树来说,第一个非叶子节点的索引是这棵完全二叉树的元素个数10除以2得到的那个索引值
如下:从后向前的考察每一个不是叶子节点的这个节点,依次进行shiftDown操作
// 构造函数, 通过一个给定数组创建一个最大堆
// 该构造堆的过程, 时间复杂度为O(n)
public MaxHeap(Item arr[]){
int n = arr.length;
data = (Item[])new Comparable[n+1];
capacity = n;
for( int i = 0 ; i < n ; i ++ )
data[i+1] = arr[i];
count = n;
for( int i = count/2 ; i >= 1 ; i -- )//第一个不是叶子节点的节点
shiftDown(i);
}
索引堆
索引堆:数据和索引这两部分内容分开存储,而真正表示堆的数据时由索引构建成的。
如果没有索引堆,当堆建成之后很难索引到它,初始的时候 系统索引表示是进程id号,当我们把系统任务的数组构建成堆以后,这些数组的索引和系统任务之间就不在产生关联了
比如原理进程id为6的任务优先级提高,组件成堆以后,元素的位置发生改变(可以在元素属性增加一个id号,但是需要把数组遍历一遍才能找到id)。

将上面数组构建成堆以后变成下图所示:

对于data这个域来说它们的内容没有发生任何改变,而真正改变的是index这个域
堆顶的元素index为10表示的就是堆顶的元素是10这个索引锁指向的data也就是62,堆顶元素的左孩子它的索引为9,相应的就是9这个索引所指向的元素41。
索引堆的好处:
1)构建堆的过程只是索引的位置发生交换
2)如果现在想对进程号为7的这个任务优先级提一提,7这个位置的data是28,我们可以提成38,提完之后还要维护堆的性质。维持新的顺序只是根据我们新的data数组来改变index这个数组就好。
在元素比较的时候比较的是data的数据,在元素交换的时候,交换的是索引

package bobo.algo;
import java.util.*;
import java.lang.*;
// 最大索引堆
public class IndexMaxHeap<Item extends Comparable> {
protected Item[] data; // 最大索引堆中的数据
protected int[] indexes; // 最大索引堆中的索引
protected int count;
protected int capacity;
// 构造函数, 构造一个空堆, 可容纳capacity个元素
public IndexMaxHeap(int capacity){
data = (Item[])new Comparable[capacity+1];
indexes = new int[capacity+1];
count = 0;
this.capacity = capacity;
}
// 返回索引堆中的元素个数
public int size(){
return count;
}
// 返回一个布尔值, 表示索引堆中是否为空
public boolean isEmpty(){
return count == 0;
}
// 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
// 传入的i对用户而言,是从0索引的
public void insert(int i, Item item){
assert count + 1 <= capacity;
assert i + 1 >= 1 && i + 1 <= capacity;
i += 1;
data[i] = item;
indexes[count+1] = i;
count ++;
shiftUp(count);
}
// 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
public Item extractMax(){
assert count > 0;
Item ret = data[indexes[1]];
swapIndexes( 1 , count );
count --;
shiftDown(1);
return ret;
}
// 从最大索引堆中取出堆顶元素的索引
public int extractMaxIndex(){
assert count > 0;
int ret = indexes[1] - 1;
swapIndexes( 1 , count );
count --;
shiftDown(1);
return ret;
}
// 获取最大索引堆中的堆顶元素
public Item getMax(){
assert count > 0;
return data[indexes[1]];
}
// 获取最大索引堆中的堆顶元素的索引
public int getMaxIndex(){
assert count > 0;
return indexes[1]-1;
}
// 获取最大索引堆中索引为i的元素
public Item getItem( int i ){
assert i + 1 >= 1 && i + 1 <= capacity;
return data[i+1];
}
// 将最大索引堆中索引为i的元素修改为newItem
public void change( int i , Item newItem ){
i += 1;
data[i] = newItem;
// 找到indexes[j] = i, j表示data[i]在堆中的位置
// 之后shiftUp(j), 再shiftDown(j)
for( int j = 1 ; j <= count ; j ++ )
if( indexes[j] == i ){
shiftUp(j);
shiftDown(j);
return;
}
}
// 交换索引堆中的索引i和j
private void swapIndexes(int i, int j){
int t = indexes[i];
indexes[i] = indexes[j];
indexes[j] = t;
}
//********************
//* 最大索引堆核心辅助函数
//********************
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
private void shiftUp(int k){
while( k > 1 && data[indexes[k/2]].compareTo(data[indexes[k]]) < 0 ){
swapIndexes(k, k/2);
k /= 2;
}
}
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
private void shiftDown(int k){
while( 2*k <= count ){
int j = 2*k;
if( j+1 <= count && data[indexes[j+1]].compareTo(data[indexes[j]]) > 0 )
j ++;
if( data[indexes[k]].compareTo(data[indexes[j]]) >= 0 )
break;
swapIndexes(k, j);
k = j;
}
}
// 测试索引堆中的索引数组index
// 注意:这个测试在向堆中插入元素以后, 不进行extract操作有效
public boolean testIndexes(){
int[] copyIndexes = new int[count+1];
for( int i = 0 ; i <= count ; i ++ )
copyIndexes[i] = indexes[i];
copyIndexes[0] = 0;
Arrays.sort(copyIndexes);
// 在对索引堆中的索引进行排序后, 应该正好是1...count这count个索引
boolean res = true;
for( int i = 1 ; i <= count ; i ++ )
if( copyIndexes[i-1] + 1 != copyIndexes[i] ){
res = false;
break;
}
if( !res ){
System.out.println("Error!");
return false;
}
return true;
}
// 测试 IndexMaxHeap
public static void main(String[] args) {
int N = 1000000;
IndexMaxHeap<Integer> indexMaxHeap = new IndexMaxHeap<Integer>(N);
for( int i = 0 ; i < N ; i ++ )
indexMaxHeap.insert( i , (int)(Math.random()*N) );
assert indexMaxHeap.testIndexes();
}
}
索引堆的优化
利用反向查找优化索引堆

比如:rev[4]=9表示的是4这个索引在index数组中它的位置是在9这个位置
来源:https://www.cnblogs.com/ssskkk/p/12274501.html
