题目分析:
本题的题意比较清晰,就是有一个起点和一个终点,给出m条路径,可能是单向的可能是双向的,同时一条路有两个权重,分别是通过这条路需要的时间和这条路的路径长度,题目需要求出两条路径,一条是在最快的基础上的最短路径,一条是在最短的路径的基础上的通过节点的数量最少的路径(题目保证这两条途径存在,且在各自的情况下唯一,但是这两条路径有可能完全相同,需要合并输出)
解法分析:
通过对题目的分析,我们知道最优的子情况就是全局的最优解,所以我们用两次dijkstra算法,一次求最短路径的情况下通过最少节点的路径记录在pre1中,一次求最快路径的基础上的最短路径,记录在pre2中,最后递归输出路径即可
代码:
1 #include<stdio.h>
2 #include<iostream>
3 #include<algorithm>
4 #include<cmath>
5 #include<string.h>
6 using namespace std;
7
8 const int N = 505;
9 const int M = 0x3f3f3f3f;
10 int pre1[N];
11 int pre2[N];
12 int dist1[N];
13 int dist2[N];
14 int mat1[N][N]; //存储距离
15 int mat2[N][N]; //存储时间
16 int vis1[N];
17 int vis2[N];
18 int num[N];
19 int n, m;
20 int min_dist, min_time;
21 int sta, en;
22
23 int minn1(){
24 int k = -1;
25 int Min = M;
26 for(int i = 0; i < n; i++){
27 if(vis1[i] == 0 && dist1[i] < Min){
28 Min = dist1[i];
29 k = i;
30 }
31 }
32 return k;
33 }
34
35 void dijkstra1(){ //计算最短距离 若有相同则选择途经的点最少的
36 memset(num, 0, sizeof(num));
37 memset(vis1, 0, sizeof(vis1));
38 for(int i = 0; i < n; i++) pre1[i] = sta;
39 for(int i = 0; i < n; i++) dist1[i] = mat1[sta][i];
40 dist1[sta] = 0;
41 pre1[sta] = -1;
42 num[sta] = 1;
43 for(int i = 1; i <= n; i++){
44 int k = minn1();
45 if(k == -1) break;
46 vis1[k] = 1;
47 for(int j = 0; j < n; j++){
48 if(vis1[j] == 0 && dist1[k] + mat1[k][j] < dist1[j]){
49 dist1[j] = dist1[k] + mat1[k][j];
50 pre1[j] = k;
51 num[j] = num[k] + 1;
52 }else if(vis1[j] == 0 && dist1[k] + mat1[k][j] == dist1[j]){
53 if(num[j] > num[k] + 1){
54 num[j] = num[k] + 1;
55 pre1[j] = k;
56 }
57 }
58 }
59 }
60 min_dist = dist1[en];
61 }
62
63 int minn2(){
64 int k = -1;
65 int Min = M;
66 for(int i = 0; i < n; i++){
67 if(vis2[i] == 0 && dist2[i] < Min){
68 Min = dist2[i];
69 k = i;
70 }
71 }
72 return k;
73 }
74
75 void dijkstra2(){ //计算最少时间 若有最少时间相同 则选择最短距离
76 memset(vis2, 0, sizeof(vis2));
77 for(int i = 0; i < n; i++) pre2[i] = sta; //因为sta会最先被选中
78 for(int i = 0; i < n; i++) dist2[i] = mat2[sta][i];
79 dist2[sta] = 0;
80 pre2[sta] = -1;
81 for(int i = 1; i < n; i++){
82 int k = minn2();
83 if(k == -1) break;
84 vis2[k] = 1;
85 for(int j = 0; j < n; j++){
86 if(vis2[j] == 0 && dist2[k] + mat2[k][j] < dist2[j]){
87 dist2[j] = dist2[k] + mat2[k][j];
88 pre2[j] = k;
89 }else if(vis2[j] == 0 && dist2[k] + mat2[k][j] == dist2[j]){
90 if(mat1[pre2[j]][j] > mat1[k][j]){
91 pre2[j] = k;
92 }
93 }
94 }
95 }
96 min_time = dist2[en];
97 }
98
99 void way(int *pre, int x){
100 if(pre[x] == -1){
101 printf("%d", x);
102 return;
103 }else{
104 way(pre, pre[x]);
105 printf(" => %d", x);
106 }
107 }
108
109 int main(){
110 scanf("%d%d", &n, &m);
111 memset(mat1, M, sizeof(mat1));
112 memset(mat2, M, sizeof(mat2));
113 for(int i = 1; i <= m; i++){
114 int a, b, c;
115 scanf("%d%d%d", &a, &b, &c);
116 if(c == 1){
117 scanf("%d%d", &mat1[a][b], &mat2[a][b]);
118 }else{
119 scanf("%d%d", &mat1[a][b], &mat2[a][b]);
120 mat1[b][a] = mat1[a][b]; mat2[b][a] = mat2[a][b];
121 }
122 }
123 scanf("%d%d", &sta, &en);
124 min_dist = M; min_time = M;
125 dijkstra1();
126 dijkstra2();
127 //如果路径统一则合并输出
128 int flag = 1;
129 int temp = en;
130 while(true){
131 if(temp == -1) break; //一定是在相等的基础上的-1
132 if(pre1[temp] == pre2[temp]) temp = pre1[temp];
133 else{
134 flag = 0;
135 break;
136 }
137 }
138 if(flag == 1){
139 printf("Time = %d; Distance = %d: ", min_time, min_dist);
140 way(pre1, en);
141 printf("\n");
142 }else{
143 printf("Time = %d: ", min_time);
144 way(pre2, en);
145 printf("\n");
146 printf("Distance = %d: ", min_dist);
147 way(pre1, en);
148 printf("\n");
149 }
150 return 0;
151 }
来源:https://www.cnblogs.com/findview/p/12263972.html