一例积分题

有些话、适合烂在心里 提交于 2020-02-02 23:23:00

求积分:

雨中漫步

0π2xsinx1+cos2xdx\int_0^{\frac{\pi}{2}}{\frac{x\sin x}{1+\cos ^2x}dx}

解:首先通过分部积分:
0π2xsinx1+cos2xdx\int_0^{\frac{\pi}{2}}{\frac{x\sin x}{1+\cos ^2x}dx}
=0π2xdarctancosx\qquad=-\int_0^{\frac{\pi}{2}}{xd\arctan\cos x}
=0π2arctancosxdx\quad =\int_0^{\frac{\pi}{2}}{\arctan\cos xdx}
=01arctanx1x2dx=\int_0^1{\frac{\arctan x}{\sqrt{1-x^2}}dx}

I(α)=01arctanαx1x2dx,I\left( \alpha \right) =\int_0^1{\frac{\arctan \alpha x}{\sqrt{1-x^2}}dx},我们有:
I(0)=0,I\left( 0 \right) =0,
I()=π201dx1x2=π24I\left( \infty \right) =\frac{\pi}{2}\int_0^1{\frac{dx}{\sqrt{1-x^2}}}=\frac{\pi ^2}{4}
接着我们研究导数有:
I(α)=01x(1+α2x2)1x2dxI'\left( \alpha \right) =\int_0^1{\frac{x}{\left( 1+\alpha ^2x^2 \right) \sqrt{1-x^2}}dx}
=01dt1+α2α2t2=\int_0^1{\frac{dt}{1+\alpha ^2-\alpha ^2t^2}}
=ln(α+α2+1)α1+α2=\frac{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right)}{\alpha \sqrt{1+\alpha ^2}}
那么:
01arctanx1x2dx=I(1)=01I(α)dα=01ln(α+α2+1)α1+α2dα=01ln(α+α2+1)1+1α2d1α=01ln(α+α2+1)dln(1α+(1α)2+1)=01ln(1α+(1α)2+1)α2+1dαln2(1+2)=1+ln(α+α2+1)α1+α2dαln2(1+2)=1+I(α)dαln2(1+2)=I()I(1)ln2(1+2)=I(1)=I()ln2(1+2)2=π2812ln2(1+2)\int_0^1{\frac{\arctan x}{\sqrt{1-x^2}}dx}=I\left( 1 \right) =\int_0^1{I'\left( \alpha \right)}d\alpha \\ =\int_0^1{\frac{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right)}{\alpha \sqrt{1+\alpha ^2}}}d\alpha \\ =-\int_0^1{\frac{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right)}{\sqrt{1+\frac{1}{\alpha ^2}}}}d\frac{1}{\alpha}\\ =-\int_0^1{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right) d\ln \left( \frac{1}{\alpha}+\sqrt{\left( \frac{1}{\alpha} \right) ^2+1} \right)}\\ =\int_0^1{\frac{\ln \left( \frac{1}{\alpha}+\sqrt{\left( \frac{1}{\alpha} \right) ^2+1} \right)}{\sqrt{\alpha ^2+1}}d\alpha -\ln ^2\left( 1+\sqrt{2} \right)}\\ =\int_1^{+\infty}{\frac{\ln \left( \alpha +\sqrt{\alpha ^2+1} \right)}{\alpha \sqrt{1+\alpha ^2}}d\alpha -\ln ^2\left( 1+\sqrt{2} \right)}\\ =\int_1^{+\infty}{I'\left( \alpha \right) d}\alpha -\ln ^2\left( 1+\sqrt{2} \right) \\ =I\left( \infty \right) -I\left( 1 \right) -\ln ^2\left( 1+\sqrt{2} \right) =I\left( 1 \right) \\ =\frac{I\left( \infty \right) -\ln ^2\left( 1+\sqrt{2} \right)}{2}\\ =\frac{\pi ^2}{8}-\frac{1}{2}\ln ^2\left( 1+\sqrt{2} \right)

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!