to_sql pyodbc count field incorrect or syntax error

萝らか妹 提交于 2019-11-27 14:14:01

UPDATE:

pandas 0.23.1 has reverted the problematic changes introduced in 0.23.0. However, the best solution for raw performance remains the CSV -> bcp approach as described below.

UPDATE:

pandas 0.24.0 apparently has re-introduced the issue (ref: here)


(Original answer)

Prior to pandas version 0.23.0, to_sql would generate a separate INSERT for each row in the DataTable:

exec sp_prepexec @p1 output,N'@P1 int,@P2 nvarchar(6)',
    N'INSERT INTO df_to_sql_test (id, txt) VALUES (@P1, @P2)',
    0,N'row000'
exec sp_prepexec @p1 output,N'@P1 int,@P2 nvarchar(6)',
    N'INSERT INTO df_to_sql_test (id, txt) VALUES (@P1, @P2)',
    1,N'row001'
exec sp_prepexec @p1 output,N'@P1 int,@P2 nvarchar(6)',
    N'INSERT INTO df_to_sql_test (id, txt) VALUES (@P1, @P2)',
    2,N'row002'

Presumably to improve performance, pandas 0.23.0 now generates a table-value constructor to insert multiple rows per call

exec sp_prepexec @p1 output,N'@P1 int,@P2 nvarchar(6),@P3 int,@P4 nvarchar(6),@P5 int,@P6 nvarchar(6)',
    N'INSERT INTO df_to_sql_test (id, txt) VALUES (@P1, @P2), (@P3, @P4), (@P5, @P6)',
    0,N'row000',1,N'row001',2,N'row002'

The problem is that SQL Server stored procedures (including system stored procedures like sp_prepexec) are limited to 2100 parameters, so if the DataFrame has 100 columns then to_sql can only insert about 20 rows at a time.

We can calculate the required chunksize using

# df is an existing DataFrame
#
# limit based on sp_prepexec parameter count
tsql_chunksize = 2097 // len(df.columns)
# cap at 1000 (limit for number of rows inserted by table-value constructor)
tsql_chunksize = 1000 if tsql_chunksize > 1000 else tsql_chunksize
#
df.to_sql('tablename', engine, if_exists='replace', index=False, chunksize=tsql_chunksize)

However, the fastest approach is still likely to be:

  • dump the DataFrame to a CSV file (or similar), and then

  • have Python call the SQL Server bcp utility to upload that file into the table.

Made a few modifications based on Gord Thompson's answer. This will auto-calculate the chunksize and keep it to the lowest nearest integer value which fits in the 2100 parameters limit :

import math
df_num_of_cols=len(df.columns)
chunknum=math.floor(2100/df_num_of_cols)
df.to_sql('MY_TABLE',con=engine,schema='myschema',chunksize=chunknum,if_exists='append',method='multi',index=False )
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!