问题
I have two DataFrames, df1
are locations of places and df2
are locations of stations. I am trying to find a more efficient way to apply a distance function to find which stations are within a certain range and return the station's name. If the distance function is a Latitude Difference of +/- 1
this is my expected outcome:
# df1
Lat Long
0 30 31
1 37 48
2 54 62
3 67 63
# df2
Station_Lat Station_Long Station
0 30 32 ABC
1 43 48 DEF
2 84 87 GHI
3 67 62 JKL
# ....Some Code that compares df1 and df2....
# result
Lat Long Station_Lat Station_Long Station
30 31 30 32 ABC
67 63 67 62 JKL
I have a solution that uses a cartesian product/Cross Join to apply a function on a single DataFrame. This solution works, but I have millions of rows in a true dataset which makes a cartesian product very slow.
import pandas as pd
df1 = pd.DataFrame({'Lat' : [30, 37, 54, 67],
'Long' : [31, 48, 62, 63]})
df2 = pd.DataFrame({'Station_Lat' : [30, 43, 84, 67],
'Station_Long' : [32, 48, 87, 62],
'Station':['ABC', 'DEF','GHI','JKL']})
# creating a 'key' for a cartesian product
df1['key'] = 1
df2['key'] = 1
# Creating the cartesian Join
df3 = pd.merge(df1, df2, on='key')
# some distance function that returns True or False
# assuming the distance function I want is +/- 1 of two values
def some_distance_func(x,y):
return x-y >= -1 and x-y <= 1
# applying the function to a column using vectorized approach
# https://stackoverflow.com/questions/52673285/performance-of-pandas-apply-vs-np-vectorize-to-create-new-column-from-existing-c
df3['t_or_f'] = list(map(some_distance_func,df3['Lat'],df3['Station_Lat']))
# result
print(df3.loc[df3['t_or_f']][['Lat','Long','Station_Lat','Station_Long','Station']].reset_index(drop=True))
I have also tried a looping approach with iterrows(), but that is slower than the cross join method. Is there a more pythonic/efficient way to achieve what I am looking for?
回答1:
You can use pd.cut function to specify proper intervals in which latitudes are contained and simply merge two dataframes to obtain the result:
bins = [(i-1,i+1) for i in df1['Lat']]
bins = [item for subbins in bins for item in subbins]
df1['Interval'] = pd.cut(df1['Lat'], bins=bins)
df2['Interval'] = pd.cut(df2['Station_Lat'], bins=bins)
pd.merge(df1,df2)
This solution is slightly faster than yours. 10.2 ms ± 201 µs per loop
vs 12.2 ms ± 1.34 ms per loop
.
回答2:
Maybe it is faster:
df2= df2.sort_values("Station_Lat")
After sorting, you can use 'searchsorted":
df1["idx"]=df2.Station_Lat.searchsorted(df1.Lat)
"idx" is the 'nearest' station lat. index, or idx+1 is this. Maybe you need duplicate the last row in df2 (see the "searchsorted doc) to avoid over indexing it. The use "apply" with this custom function:
def dist(row):
if abs(row.Lat-df2.loc[row.idx].Station_Lat)<=1:
return df2.loc[row.idx].Station
elif abs(row.Lat-df2.loc[row.idx+1].Station_Lat)<=1:
return df2.loc[row.idx+1].Station
return False
df1.apply(dist,axis=1)
0 ABC
1 False
2 False
3 JKL
dtype: object
Edit: Because in 'dist()' it is assumed that df2.index is ordered and monotonic increasing (see: roww.idx+1), the 1st code line must be corrected:
df2= df2.sort_values("Station_Lat").reset_index(drop=True)
And 'dist()' is somewhat faster that way (but doesn't beat the Cartesian product method):
def dist(row):
idx=row.idx
lat1,lat2= df2.loc[idx:idx+1,"Station_Lat"]
if abs(row.Lat-lat1)<=1:
return df2.loc[idx,"Station"]
elif abs(row.Lat-lat2)<=1:
return df2.loc[idx+1,"Station"]
return False
回答3:
How about a lambda?
df3[df3.apply(lambda x, col1='Lat', col2='Station_Lat': x[col1]-x[col2] >= -1 and x[col1]-x[col2] <= 1, axis=1)]['Station']
Output:
0 ABC
15 JKL
Edit: Here's a second solution. (Note: This also uses abs() since >=-1 and <= 1 seems redundant.)
for i in df1.index:
for j in df2.index:
if abs(df1.loc[i, 'Lat'] - df2.loc[j, 'Station_Lat']) <=1:
print(df2.loc[j, 'Station'])
Or, in list comprehension form:
df2.loc[[i for i in df1.index for j in df2.index if abs(df1.loc[i, 'Lat'] - df2.loc[j, 'Station_Lat']) <=1], 'Station']
Output:
ABC
JKL
来源:https://stackoverflow.com/questions/59489368/pandas-return-separate-dataframe-values-based-on-function