Get data from pandas into a SQL server with PYODBC

偶尔善良 提交于 2019-11-27 13:14:19
joris

For the 'write to sql server' part, you can use the convenient to_sql method of pandas (so no need to iterate over the rows and do the insert manually). See the docs on interacting with SQL databases with pandas: http://pandas.pydata.org/pandas-docs/stable/io.html#io-sql

You will need at least pandas 0.14 to have this working, and you also need sqlalchemy installed. An example, assuming df is the DataFrame you got from read_table:

import sqlalchemy
import pyodbc
engine = sqlalchemy.create_engine("mssql+pyodbc://<username>:<password>@<dsnname>")

# write the DataFrame to a table in the sql database
df.to_sql("table_name", engine)

See also the documentation page of to_sql.
More info on how to create the connection engine with sqlalchemy for sql server with pyobdc, you can find here:http://docs.sqlalchemy.org/en/rel_1_1/dialects/mssql.html#dialect-mssql-pyodbc-connect


But if your goal is to just get the csv data into the SQL database, you could also consider doing this directly from SQL. See eg Import CSV file into SQL Server

Python3 version using a LocalDB SQL instance:

from sqlalchemy import create_engine
import urllib
import pyodbc
import pandas as pd

df = pd.read_csv("./data.csv")

quoted = urllib.parse.quote_plus("DRIVER={SQL Server Native Client 11.0};SERVER=(localDb)\ProjectsV14;DATABASE=database")
engine = create_engine('mssql+pyodbc:///?odbc_connect={}'.format(quoted))

df.to_sql('TargetTable', schema='dbo', con = engine)

result = engine.execute('SELECT COUNT(*) FROM [dbo].[TargetTable]')
result.fetchall()

I found that using bcp utility (https://docs.microsoft.com/en-us/sql/tools/bcp-utility) works best when you have a large dataset. I have 2.7 million rows that inserts at 80K rows/sec. You can store your data frame as csv file (use tabs for separator if your data doesn't have tabs and utf8 encoding). With bcp, I've used format "-c" and it works without issues so far.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!