A numpy array unexpectedly changes when changing another one despite being separate

£可爱£侵袭症+ 提交于 2020-01-11 03:22:13

问题


I found a bug in my large code, and I simplified the issue to the case below.

Although in each step I only change w2, but when at each step I print out w1, it is also changed, because end of the first loop I assign them to be equal. I read for this but there was written in case I make w1 = w2[:] it will solve the issue but it does not

import numpy as np
import math

w1=np.array([[1,2,3],[4,5,6],[7,8,9]])
w2=np.zeros_like(w1)
print 'w1=',w1
for n in range(0,3):
    for i in range(0,3):
        for j in range(0,3):
            print 'n=',n,'i=',i,'j=',j,'w1=',w1
            w2[i,j]=w1[i,j]*2

    w1=w2[:]


#Simple tests
# w=w2[:]
# w1=w[:]

# p=[1,2,3]
# q=p[:];
# q[1]=0;
# print p

回答1:


The issue is that when you're assigning values back to w1 from w2 you aren't actually passing the values from w1 to w2, but rather you are actually pointing the two variables at the same object.

The issue you are having

w1 = np.array([1,2,3])
w2 = w1

w2[0] = 3

print(w2)   # [3 2 3]
print(w1)   # [3 2 3]

np.may_share_memory(w2, w1)  # True

The Solution

Instead you will want to copy over the values. There are two common ways of doing this with numpy arrays.

w1 = numpy.copy(w2)
w1[:] = w2[:]

Demonstration

w1 = np.array([1,2,3])
w2 = np.zeros_like(w1)

w2[:] = w1[:]

w2[0] = 3

print(w2)   # [3 2 3]
print(w1)   # [1 2 3]

np.may_share_memory(w2, w1)   # False


来源:https://stackoverflow.com/questions/35978165/a-numpy-array-unexpectedly-changes-when-changing-another-one-despite-being-separ

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!