1. 以下关系型数据库中的表和数据,要求将其转换为适合于HBase存储的表并插入数据:
学生表(Student)(不包括最后一列)
|
学号(S_No) |
姓名(S_Name) |
性别(S_Sex) |
年龄(S_Age) |
课程(course) |
|
2015001 |
Zhangsan |
male |
23 |
|
|
2015003 |
Mary |
female |
22 |
|
|
2015003 |
Lisi |
male |
24 |
数学(Math)85 |
create 'Student', ' S_No ','S_Name', ’S_Sex’,'S_Age' put 'Student','s001','S_No','2015001' put 'Student','s001','S_Name','Zhangsan' put 'Student','s001','S_Sex','male' put 'Student','s001','S_Age','23' put 'Student','s002','S_No','2015003' put 'Student','s002','S_Name','Mary' put 'Student','s002','S_Sex','female' put 'Student','s002','S_Age','22' put 'Student','s003','S_No','2015003' put 'Student','s003','S_Name','Lisi' put 'Student','s003','S_Sex','male' put 'Student','s003','S_Age','24'
2. 用Hadoop提供的HBase Shell命令完成相同任务:
- 列出HBase所有的表的相关信息;list
- 在终端打印出学生表的所有记录数据;
- 向学生表添加课程列族;
- 向课程列族添加数学列并登记成绩为85;
- 删除课程列;
- 统计表的行数;count 's1'
- 清空指定的表的所有记录数据;truncate 's1'
list scan 'Student' alter 'Student','NAME'=>'course' put 'Student','s003','course:Math','85' dorp 'Student','course' count 's1' count 'Student' truncate 's1' truncate 'Student'
理解MapReduce
1. 用Python编写WordCount程序并提交任务
|
程序 |
WordCount |
|
输入 |
一个包含大量单词的文本文件 |
|
输出 |
文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔 |
- 编写map函数,reduce函数
#! /usr/bin/python3 # Map函数 import sys for line in sys.stdin: line=line.strip() words=line.split() for word in words: print ('%s\t%s' % (word,1))#! /usr/bin/python3 # Reduce函数 from operator import itemgetter import sys current_word=None current_count=0 word=None for line in sys.stdin: line=line.strip() word,count=line.split('\t',1) try: count=int(count) except ValueError: continue if current_word==word: current_count+=count else: if current_word: print ('%s\t%s' % (current_word,current_count)) current_count=count current_word=word if current_word==word: print ('%s\t%s' % (current_word,current_count)) - 将其权限作出相应修改
sudo chmod 777 mapper.py sudo chmod 777 reducter.py
- 本机上测试运行代码
echo "Hello World, Bye World" | ./mapper.py echo "Hello World, Bye World" | ./mapper.py | sort -k1,1 | ./reducter.py
- 放到HDFS上运行
- 将之前爬取的文本文件上传到hdfs上
- 用Hadoop Streaming命令提交任务
- 查看运行结果

2. 用mapreduce 处理气象数据集
编写程序求每日最高最低气温,区间最高最低气温
- 气象数据集下载地址为:ftp://ftp.ncdc.noaa.gov/pub/data/noaa
- 按学号后三位下载不同年份月份的数据(例如201506110136号同学,就下载2013年以6开头的数据,看具体数据情况稍有变通)
- 解压数据集,并保存在文本文件中
- 对气象数据格式进行解析
- 编写map函数,reduce函数
- 将其权限作出相应修改
- 本机上测试运行代码
- 放到HDFS上运行
- 将之前爬取的文本文件上传到hdfs上
- 用Hadoop Streaming命令提交任务
- 查看运行结果
cd /usr/hadoop
sodu mkdir qx
cd /usr/hadoop/qx
wget -D --accept-regex=REGEX -P data -r -c ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2009/6*
cd /usr/hadoop/qx/data/ftp.ncdc.noaa.gov/pub/data/noaa/2009
sudo zcat 1*.gz >qxdata.txt
cd /usr/hadoop/qx
import sys
for i in sys.stdin:
i = i.strip()
d = i[15:23]
t = i[87:92]
print '%s\t%s' % (d,t)
from operator import itemggetter
import sys
current_word = None
current_count = 0
word = None
for i in sys.stdin:
i = i.strip()
word,count = i.split('\t', 1)
try:
count = int(count)
except ValueError:
continue
if current_word == word:
if current_count > count:
current_count = count
else:
if current_word:
print '%s\t%s' % (current_word, current_count)
current_count = count
current_word = word
if current_word == word:
print '%s\t%s' % (current_word, current_count)
chmod a+x /usr/hadoop/qx/mapper.py
chmod a+x /usr/hadoop/qx/reducer.py
来源:https://www.cnblogs.com/severusandsusa/p/9021931.html
