How can I write a generic container class that implements a given interface in C#?

左心房为你撑大大i 提交于 2019-11-27 11:49:18

This isn't pretty, but it seems to work:

public static class GroupGenerator
{
    public static T Create<T>(IEnumerable<T> items) where T : class
    {
        return (T)Activator.CreateInstance(Cache<T>.Type, items);
    }
    private static class Cache<T> where T : class
    {
        internal static readonly Type Type;
        static Cache()
        {
            if (!typeof(T).IsInterface)
            {
                throw new InvalidOperationException(typeof(T).Name
                    + " is not an interface");
            }
            AssemblyName an = new AssemblyName("tmp_" + typeof(T).Name);
            var asm = AppDomain.CurrentDomain.DefineDynamicAssembly(
                an, AssemblyBuilderAccess.RunAndSave);
            string moduleName = Path.ChangeExtension(an.Name,"dll");
            var module = asm.DefineDynamicModule(moduleName, false);
            string ns = typeof(T).Namespace;
            if (!string.IsNullOrEmpty(ns)) ns += ".";
            var type = module.DefineType(ns + "grp_" + typeof(T).Name,
                TypeAttributes.Class | TypeAttributes.AnsiClass |
                TypeAttributes.Sealed | TypeAttributes.NotPublic);
            type.AddInterfaceImplementation(typeof(T));

            var fld = type.DefineField("items", typeof(IEnumerable<T>),
                FieldAttributes.Private);
            var ctor = type.DefineConstructor(MethodAttributes.Public,
                CallingConventions.HasThis, new Type[] { fld.FieldType });
            var il = ctor.GetILGenerator();
            // store the items
            il.Emit(OpCodes.Ldarg_0);
            il.Emit(OpCodes.Ldarg_1);
            il.Emit(OpCodes.Stfld, fld);
            il.Emit(OpCodes.Ret);

            foreach (var method in typeof(T).GetMethods())
            {
                var args = method.GetParameters();
                var methodImpl = type.DefineMethod(method.Name,
                    MethodAttributes.Private | MethodAttributes.Virtual,
                    method.ReturnType,
                    Array.ConvertAll(args, arg => arg.ParameterType));
                type.DefineMethodOverride(methodImpl, method);
                il = methodImpl.GetILGenerator();
                if (method.ReturnType != typeof(void))
                {
                    il.Emit(OpCodes.Ldstr,
                        "Methods with return values are not supported");
                    il.Emit(OpCodes.Newobj, typeof(NotSupportedException)
                        .GetConstructor(new Type[] {typeof(string)}));
                    il.Emit(OpCodes.Throw);
                    continue;
                }

                // get the iterator
                var iter = il.DeclareLocal(typeof(IEnumerator<T>));
                il.Emit(OpCodes.Ldarg_0);
                il.Emit(OpCodes.Ldfld, fld);
                il.EmitCall(OpCodes.Callvirt, typeof(IEnumerable<T>)
                    .GetMethod("GetEnumerator"), null);
                il.Emit(OpCodes.Stloc, iter);
                Label tryFinally = il.BeginExceptionBlock();

                // jump to "progress the iterator"
                Label loop = il.DefineLabel();
                il.Emit(OpCodes.Br_S, loop);

                // process each item (invoke the paired method)
                Label doItem = il.DefineLabel();
                il.MarkLabel(doItem);
                il.Emit(OpCodes.Ldloc, iter);
                il.EmitCall(OpCodes.Callvirt, typeof(IEnumerator<T>)
                    .GetProperty("Current").GetGetMethod(), null);
                for (int i = 0; i < args.Length; i++)
                { // load the arguments
                    switch (i)
                    {
                        case 0: il.Emit(OpCodes.Ldarg_1); break;
                        case 1: il.Emit(OpCodes.Ldarg_2); break;
                        case 2: il.Emit(OpCodes.Ldarg_3); break;
                        default:
                            il.Emit(i < 255 ? OpCodes.Ldarg_S
                                : OpCodes.Ldarg, i + 1);
                            break;
                    }
                }
                il.EmitCall(OpCodes.Callvirt, method, null);

                // progress the iterator
                il.MarkLabel(loop);
                il.Emit(OpCodes.Ldloc, iter);
                il.EmitCall(OpCodes.Callvirt, typeof(IEnumerator)
                    .GetMethod("MoveNext"), null);
                il.Emit(OpCodes.Brtrue_S, doItem);
                il.Emit(OpCodes.Leave_S, tryFinally);

                // dispose iterator
                il.BeginFinallyBlock();
                Label endFinally = il.DefineLabel();
                il.Emit(OpCodes.Ldloc, iter);
                il.Emit(OpCodes.Brfalse_S, endFinally);
                il.Emit(OpCodes.Ldloc, iter);
                il.EmitCall(OpCodes.Callvirt, typeof(IDisposable)
                    .GetMethod("Dispose"), null);
                il.MarkLabel(endFinally);
                il.EndExceptionBlock();
                il.Emit(OpCodes.Ret);
            }
            Cache<T>.Type = type.CreateType();
#if DEBUG       // for inspection purposes...
            asm.Save(moduleName);
#endif
        }
    }
}

It's not as clean an interface as the reflection based solution, but a very simple and flexible solution is to create a ForAll method like so:

static void ForAll<T>(this IEnumerable<T> items, Action<T> action)
{
    foreach (T item in items)
    {
        action(item);
    }
}

And can be called like so:

arr.ForAll(x => x.Start());

You could subclass List<T> or some other collection class and use the where generic type constraint to limit the T type to be only IStartable classes.

class StartableList<T> : List<T>, IStartable where T : IStartable
{
    public StartableList(IEnumerable<T> arr)
        : base(arr)
    {
    }

    public void Start()
    {
        foreach (IStartable s in this)
        {
            s.Start();
        }
    }

    public void Stop()
    {
        foreach (IStartable s in this)
        {
            s.Stop();
        }
    }
}

You could also declare the class like this if you didn't want it to be a generic class requiring a type parameter.

public class StartableList : List<IStartable>, IStartable
{ ... }

Your sample usage code would then look something like this:

var arr = new IStartable[] { new Foo(), new Bar("wow") };
var mygroup = new StartableList<IStartable>(arr);
mygroup.Start(); // --> calls Foo's Start and Bar's Start

Automapper is a good solution to this. It relies on LinFu underneath to create an instance that implements an interface, but it takes care of some of the hydration, and mixins under a somewhat fluent api. The LinFu author claims it is actually much more lightweight and faster than Castle's Proxy.

You could wait for C# 4.0 and use dynamic binding.

This is a great idea - I've had to implement this for IDisposable on several occasions; when I want many things to be disposed. One thing to keep in mind though is how errors will be handled. Should it log and keep starting others, etc... You'd need some options to give the class.

I'm not familiar with DynamicProxy and how it could be used here.

You can use the "List" class and their method "ForEach".

var startables = new List<IStartable>( array_of_startables );
startables.ForEach( t => t.Start(); }

If I understand correctly, you are asking for an implementation of the "GroupGenerator".

Without any real experience with CastleProxy my recommendation would be to use GetMethods() to get the initial methods listed in the interface and then create a new type on the fly using Reflection.Emit with the new methods that enumerate through the objects and call each corresponding method. The performance shouldn't be too bad.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!