Obtaining threshold values from a ROC curve

核能气质少年 提交于 2019-11-27 11:02:59

This is why str is my favorite R function:

library(ROCR)
data(ROCR.simple)
pred <- prediction( ROCR.simple$predictions, ROCR.simple$labels)
perf <- performance(pred,"tpr","fpr")
plot(perf)
> str(perf)
Formal class 'performance' [package "ROCR"] with 6 slots
  ..@ x.name      : chr "False positive rate"
  ..@ y.name      : chr "True positive rate"
  ..@ alpha.name  : chr "Cutoff"
  ..@ x.values    :List of 1
  .. ..$ : num [1:201] 0 0 0 0 0.00935 ...
      ..@ y.values    :List of 1
      .. ..$ : num [1:201] 0 0.0108 0.0215 0.0323 0.0323 ...
  ..@ alpha.values:List of 1
  .. ..$ : num [1:201] Inf 0.991 0.985 0.985 0.983 ...

Ahah! It's an S4 class, so we can use @ to access the slots. Here's how you make a data.frame:

cutoffs <- data.frame(cut=perf@alpha.values[[1]], fpr=perf@x.values[[1]], 
                      tpr=perf@y.values[[1]])
> head(cutoffs)
        cut         fpr        tpr
1       Inf 0.000000000 0.00000000
2 0.9910964 0.000000000 0.01075269
3 0.9846673 0.000000000 0.02150538
4 0.9845992 0.000000000 0.03225806
5 0.9834944 0.009345794 0.03225806
6 0.9706413 0.009345794 0.04301075

If you have an fpr threshold you want to hit, you can subset this data.frame to find maximum tpr below this fpr threshold:

cutoffs <- cutoffs[order(cutoffs$tpr, decreasing=TRUE),]
> head(subset(cutoffs, fpr < 0.2))
          cut       fpr       tpr
96  0.5014893 0.1495327 0.8494624
97  0.4997881 0.1588785 0.8494624
98  0.4965132 0.1682243 0.8494624
99  0.4925969 0.1775701 0.8494624
100 0.4917356 0.1869159 0.8494624
101 0.4901199 0.1962617 0.8494624

Package pROC includes function coords for calculating best threshold:

library(pROC)
my_roc <- roc(my_response, my_predictor)
coords(my_roc, "best", ret = "threshold")

2 solutions based on the ROCR and pROC packages:

threshold1 <- function(predict, response) {
    perf <- ROCR::performance(ROCR::prediction(predict, response), "sens", "spec")
    df <- data.frame(cut = perf@alpha.values[[1]], sens = perf@x.values[[1]], spec = perf@y.values[[1]])
    df[which.max(df$sens + df$spec), "cut"]
}
threshold2 <- function(predict, response) {
    r <- pROC::roc(response, predict)
    r$thresholds[which.max(r$sensitivities + r$specificities)]
}
data(ROCR.simple, package = "ROCR")
threshold1(ROCR.simple$predictions, ROCR.simple$labels)
#> [1] 0.5014893
threshold2(ROCR.simple$predictions, ROCR.simple$labels)
#> [1] 0.5006387

See also OptimalCutpoints package which provides many algorithms to find an optimal thresholds.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!