Most efficient way to find mode in numpy array

最后都变了- 提交于 2019-12-28 01:52:08

问题


I have a 2D array containing integers (both positive or negative). Each row represents the values over time for a particular spatial site, whereas each column represents values for various spatial sites for a given time.

So if the array is like:

1 3 4 2 2 7
5 2 2 1 4 1
3 3 2 2 1 1

The result should be

1 3 2 2 2 1

Note that when there are multiple values for mode, any one (selected randomly) may be set as mode.

I can iterate over the columns finding mode one at a time but I was hoping numpy might have some in-built function to do that. Or if there is a trick to find that efficiently without looping.


回答1:


Check scipy.stats.mode() (inspired by @tom10's comment):

import numpy as np
from scipy import stats

a = np.array([[1, 3, 4, 2, 2, 7],
              [5, 2, 2, 1, 4, 1],
              [3, 3, 2, 2, 1, 1]])

m = stats.mode(a)
print(m)

Output:

ModeResult(mode=array([[1, 3, 2, 2, 1, 1]]), count=array([[1, 2, 2, 2, 1, 2]]))

As you can see, it returns both the mode as well as the counts. You can select the modes directly via m[0]:

print(m[0])

Output:

[[1 3 2 2 1 1]]



回答2:


Update

The scipy.stats.mode function has been significantly optimized since this post, and would be the recommended method

Old answer

This is a tricky problem, since there is not much out there to calculate mode along an axis. The solution is straight forward for 1-D arrays, where numpy.bincount is handy, along with numpy.unique with the return_counts arg as True. The most common n-dimensional function I see is scipy.stats.mode, although it is prohibitively slow- especially for large arrays with many unique values. As a solution, I've developed this function, and use it heavily:

import numpy

def mode(ndarray, axis=0):
    # Check inputs
    ndarray = numpy.asarray(ndarray)
    ndim = ndarray.ndim
    if ndarray.size == 1:
        return (ndarray[0], 1)
    elif ndarray.size == 0:
        raise Exception('Cannot compute mode on empty array')
    try:
        axis = range(ndarray.ndim)[axis]
    except:
        raise Exception('Axis "{}" incompatible with the {}-dimension array'.format(axis, ndim))

    # If array is 1-D and numpy version is > 1.9 numpy.unique will suffice
    if all([ndim == 1,
            int(numpy.__version__.split('.')[0]) >= 1,
            int(numpy.__version__.split('.')[1]) >= 9]):
        modals, counts = numpy.unique(ndarray, return_counts=True)
        index = numpy.argmax(counts)
        return modals[index], counts[index]

    # Sort array
    sort = numpy.sort(ndarray, axis=axis)
    # Create array to transpose along the axis and get padding shape
    transpose = numpy.roll(numpy.arange(ndim)[::-1], axis)
    shape = list(sort.shape)
    shape[axis] = 1
    # Create a boolean array along strides of unique values
    strides = numpy.concatenate([numpy.zeros(shape=shape, dtype='bool'),
                                 numpy.diff(sort, axis=axis) == 0,
                                 numpy.zeros(shape=shape, dtype='bool')],
                                axis=axis).transpose(transpose).ravel()
    # Count the stride lengths
    counts = numpy.cumsum(strides)
    counts[~strides] = numpy.concatenate([[0], numpy.diff(counts[~strides])])
    counts[strides] = 0
    # Get shape of padded counts and slice to return to the original shape
    shape = numpy.array(sort.shape)
    shape[axis] += 1
    shape = shape[transpose]
    slices = [slice(None)] * ndim
    slices[axis] = slice(1, None)
    # Reshape and compute final counts
    counts = counts.reshape(shape).transpose(transpose)[slices] + 1

    # Find maximum counts and return modals/counts
    slices = [slice(None, i) for i in sort.shape]
    del slices[axis]
    index = numpy.ogrid[slices]
    index.insert(axis, numpy.argmax(counts, axis=axis))
    return sort[index], counts[index]

Result:

In [2]: a = numpy.array([[1, 3, 4, 2, 2, 7],
                         [5, 2, 2, 1, 4, 1],
                         [3, 3, 2, 2, 1, 1]])

In [3]: mode(a)
Out[3]: (array([1, 3, 2, 2, 1, 1]), array([1, 2, 2, 2, 1, 2]))

Some benchmarks:

In [4]: import scipy.stats

In [5]: a = numpy.random.randint(1,10,(1000,1000))

In [6]: %timeit scipy.stats.mode(a)
10 loops, best of 3: 41.6 ms per loop

In [7]: %timeit mode(a)
10 loops, best of 3: 46.7 ms per loop

In [8]: a = numpy.random.randint(1,500,(1000,1000))

In [9]: %timeit scipy.stats.mode(a)
1 loops, best of 3: 1.01 s per loop

In [10]: %timeit mode(a)
10 loops, best of 3: 80 ms per loop

In [11]: a = numpy.random.random((200,200))

In [12]: %timeit scipy.stats.mode(a)
1 loops, best of 3: 3.26 s per loop

In [13]: %timeit mode(a)
1000 loops, best of 3: 1.75 ms per loop

EDIT: Provided more of a background and modified the approach to be more memory-efficient




回答3:


Expanding on this method, applied to finding the mode of the data where you may need the index of the actual array to see how far away the value is from the center of the distribution.

(_, idx, counts) = np.unique(a, return_index=True, return_counts=True)
index = idx[np.argmax(counts)]
mode = a[index]

Remember to discard the mode when len(np.argmax(counts)) > 1, also to validate if it is actually representative of the central distribution of your data you may check whether it falls inside your standard deviation interval.




回答4:


A neat solution that only uses numpy (not scipy nor the Counter class):

A = np.array([[1,3,4,2,2,7], [5,2,2,1,4,1], [3,3,2,2,1,1]])

np.apply_along_axis(lambda x: np.bincount(x).argmax(), axis=0, arr=A)

array([1, 3, 2, 2, 1, 1])




回答5:


I think a very simple way would be to use the Counter class. You can then use the most_common() function of the Counter instance as mentioned here.

For 1-d arrays:

import numpy as np
from collections import Counter

nparr = np.arange(10) 
nparr[2] = 6 
nparr[3] = 6 #6 is now the mode
mode = Counter(nparr).most_common(1)
# mode will be [(6,3)] to give the count of the most occurring value, so ->
print(mode[0][0])    

For multiple dimensional arrays (little difference):

import numpy as np
from collections import Counter

nparr = np.arange(10) 
nparr[2] = 6 
nparr[3] = 6 
nparr = nparr.reshape((10,2,5))     #same thing but we add this to reshape into ndarray
mode = Counter(nparr.flatten()).most_common(1)  # just use .flatten() method

# mode will be [(6,3)] to give the count of the most occurring value, so ->
print(mode[0][0])

This may or may not be an efficient implementation, but it is convenient.




回答6:


from collections import Counter

n = int(input())
data = sorted([int(i) for i in input().split()])

sorted(sorted(Counter(data).items()), key = lambda x: x[1], reverse = True)[0][0]

print(Mean)

The Counter(data) counts the frequency and returns a defaultdict. sorted(Counter(data).items()) sorts using the keys, not the frequency. Finally, need to sorted the frequency using another sorted with key = lambda x: x[1]. The reverse tells Python to sort the frequency from the largest to the smallest.



来源:https://stackoverflow.com/questions/16330831/most-efficient-way-to-find-mode-in-numpy-array

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!