pandas: how to run a pivot with a multi-index?

寵の児 提交于 2019-11-27 09:45:15

问题


I would like to run a pivot on a pandas DataFrame, with the index being two columns, not one. For example, one field for the year, one for the month, an 'item' field which shows 'item 1' and 'item 2' and a 'value' field with numerical values. I want the index to be year + month.

The only way I managed to get this to work was to combine the two fields into one, then separate them again. is there a better way?

Minimal code copied below. Thanks a lot!

PS Yes, I am aware there are other questions with the keywords 'pivot' and 'multi-index', but I did not understand if/how they can help me with this question.

import pandas as pd
import numpy as np

df= pd.DataFrame()
month = np.arange(1, 13)
values1 = np.random.randint(0, 100, 12)
values2 = np.random.randint(200, 300, 12)


df['month'] = np.hstack((month, month))
df['year'] = 2004
df['value'] = np.hstack((values1, values2))
df['item'] = np.hstack((np.repeat('item 1', 12), np.repeat('item 2', 12)))

# This doesn't work: 
# ValueError: Wrong number of items passed 24, placement implies 2
# mypiv = df.pivot(['year', 'month'], 'item', 'value')

# This doesn't work, either:
# df.set_index(['year', 'month'], inplace=True)
# ValueError: cannot label index with a null key
# mypiv = df.pivot(columns='item', values='value')

# This below works but is not ideal: 
# I have to first concatenate then separate the fields I need
df['new field'] = df['year'] * 100 + df['month']

mypiv = df.pivot('new field', 'item', 'value').reset_index()
mypiv['year'] = mypiv['new field'].apply( lambda x: int(x) / 100)  
mypiv['month'] = mypiv['new field'] % 100

回答1:


You can group and then unstack.

>>> df.groupby(['year', 'month', 'item'])['value'].sum().unstack('item')
item        item 1  item 2
year month                
2004 1          33     250
     2          44     224
     3          41     268
     4          29     232
     5          57     252
     6          61     255
     7          28     254
     8          15     229
     9          29     258
     10         49     207
     11         36     254
     12         23     209

Or use pivot_table:

>>> df.pivot_table(
        values='value', 
        index=['year', 'month'], 
        columns='item', 
        aggfunc=np.sum)
item        item 1  item 2
year month                
2004 1          33     250
     2          44     224
     3          41     268
     4          29     232
     5          57     252
     6          61     255
     7          28     254
     8          15     229
     9          29     258
     10         49     207
     11         36     254
     12         23     209



回答2:


I believe if you include item in your MultiIndex, then you can just unstack:

df.set_index(['year', 'month', 'item']).unstack(level=-1)

This yields:

                value      
item       item 1 item 2
year month              
2004 1         21    277
     2         43    244
     3         12    262
     4         80    201
     5         22    287
     6         52    284
     7         90    249
     8         14    229
     9         52    205
     10        76    207
     11        88    259
     12        90    200

It's a bit faster than using pivot_table, and about the same speed or slightly slower than using groupby.



来源:https://stackoverflow.com/questions/35414625/pandas-how-to-run-a-pivot-with-a-multi-index

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!