OpenCV unable to set up SVM Parameters

為{幸葍}努か 提交于 2019-11-27 09:09:44
Miki

A lot of things changed from OpenCV 2.4 to OpenCV 3.0. Among others, the machine learning module, which isn't backward compatible.

This is the OpenCV tutorial code for the SVM, update for OpenCV 3.0:

#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include "opencv2/imgcodecs.hpp"
#include <opencv2/highgui.hpp>
#include <opencv2/ml.hpp>

using namespace cv;
using namespace cv::ml;

int main(int, char**)
{
    // Data for visual representation
    int width = 512, height = 512;
    Mat image = Mat::zeros(height, width, CV_8UC3);

    // Set up training data
    int labels[4] = { 1, -1, -1, -1 };
    Mat labelsMat(4, 1, CV_32SC1, labels);

    float trainingData[4][2] = { { 501, 10 }, { 255, 10 }, { 501, 255 }, { 10, 501 } };
    Mat trainingDataMat(4, 2, CV_32FC1, trainingData);

    // Set up SVM's parameters
    Ptr<SVM> svm = SVM::create();
    svm->setType(SVM::C_SVC);
    svm->setKernel(SVM::LINEAR);
    svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));

    // Train the SVM with given parameters
    Ptr<TrainData> td = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
    svm->train(td);

    // Or train the SVM with optimal parameters
    //svm->trainAuto(td);

    Vec3b green(0, 255, 0), blue(255, 0, 0);
    // Show the decision regions given by the SVM
    for (int i = 0; i < image.rows; ++i)
        for (int j = 0; j < image.cols; ++j)
        {
            Mat sampleMat = (Mat_<float>(1, 2) << j, i);
            float response = svm->predict(sampleMat);

            if (response == 1)
                image.at<Vec3b>(i, j) = green;
            else if (response == -1)
                image.at<Vec3b>(i, j) = blue;
        }

    // Show the training data
    int thickness = -1;
    int lineType = 8;
    circle(image, Point(501, 10), 5, Scalar(0, 0, 0), thickness, lineType);
    circle(image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
    circle(image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
    circle(image, Point(10, 501), 5, Scalar(255, 255, 255), thickness, lineType);

    // Show support vectors
    thickness = 2;
    lineType = 8;
    Mat sv = svm->getSupportVectors();

    for (int i = 0; i < sv.rows; ++i)
    {
        const float* v = sv.ptr<float>(i);
        circle(image, Point((int)v[0], (int)v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
    }

    imwrite("result.png", image);        // save the image

    imshow("SVM Simple Example", image); // show it to the user
    waitKey(0);

}

The output should look like:

Joseph Santarcangelo

I found the code above worked but I needed to make a small modification to convert the labels to integers. The modification is in bold:

// Set up training data **Original**:

int labels[4] = { 1, -1, -1, -1 };

Mat labelsMat(4, 1, **CV_32SC1**, labels);

// Set up training data **Modified**:

int labels[4] = { 1, -1, -1, -1 };

Mat labelsMat(4, 1, **CV_32S**, labels);
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!