I'm trying to expose a read-only dictionary that holds objects with a read-only interface. Internally, the dictionary is write-able, and so are the objects within (see below example code). My problem is that IReadOnlyDictionary doesn't support covariant conversions because of the reason outlined in the question here. This means I can't just expose my internal dictionary as a read only one.
So my question is, is there an efficient way to convert my internal dictionary to an IReadOnlyDictionary, or some other way to handle this? The options I can think of are:
- Hold two internal dictionaries and keep them in sync.
- Create a new dictionary when the property is accessed and cast all the objects within.
- Cast the IReadOnly's back to NotReadOnly when using it internally.
1 seems like a pain, 2 seems highly inefficient. 3 sounds like the most promising at the moment, but is still ugly. Do I have any other options?
public class ExposesReadOnly
{
private Dictionary<int, NotReadOnly> InternalDict { get; set; }
public IReadOnlyDictionary<int, IReadOnly> PublicList
{
get
{
// This doesn't work...
return this.InternalDict;
}
}
// This class can be modified internally, but I don't want
// to expose this functionality.
private class NotReadOnly : IReadOnly
{
public string Name { get; set; }
}
}
public interface IReadOnly
{
string Name { get; }
}
You could write your own read-only wrapper for the dictionary, e.g.:
public class ReadOnlyDictionaryWrapper<TKey, TValue, TReadOnlyValue> : IReadOnlyDictionary<TKey, TReadOnlyValue> where TValue : TReadOnlyValue
{
private IDictionary<TKey, TValue> _dictionary;
public ReadOnlyDictionaryWrapper(IDictionary<TKey, TValue> dictionary)
{
if (dictionary == null) throw new ArgumentNullException("dictionary");
_dictionary = dictionary;
}
public bool ContainsKey(TKey key) { return _dictionary.ContainsKey(key); }
public IEnumerable<TKey> Keys { get { return _dictionary.Keys; } }
public bool TryGetValue(TKey key, out TReadOnlyValue value)
{
TValue v;
var result = _dictionary.TryGetValue(key, out v);
value = v;
return result;
}
public IEnumerable<TReadOnlyValue> Values { get { return _dictionary.Values.Cast<TReadOnlyValue>(); } }
public TReadOnlyValue this[TKey key] { get { return _dictionary[key]; } }
public int Count { get { return _dictionary.Count; } }
public IEnumerator<KeyValuePair<TKey, TReadOnlyValue>> GetEnumerator()
{
return _dictionary
.Select(x => new KeyValuePair<TKey, TReadOnlyValue>(x.Key, x.Value))
.GetEnumerator();
}
System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
{
return this.GetEnumerator();
}
}
I would suggest that you might want to define your own covariant interfaces, and include covariant access methods as well as a method which will create a read-only wrapper object which implements either IDictionary or IReadonlyDictionary with the desired types. Simply ignore IEnumerable<KeyValuePair<TKey,TValue>> within your interface.
Depending upon what you're doing, it may be helpful to define an IFetchByKey<out TValue> which is inherited by IFetchByKey<in TKey, out TValue>, with the former accepting queries for any type of object (given an object instance, a collection of Cat should be able to say whether it contains that instance, even if it's a type Dog or ToyotaPrius; the collection won't contain any instances of the latter types, and should be able to say so).
Maybe this solutions works for you:
public class ExposesReadOnly
{
private IDictionary<int, IReadOnly> InternalDict { get; set; }
public IReadOnlyDictionary<int, IReadOnly> PublicList
{
get
{
IReadOnlyDictionary<int, IReadOnly> dictionary = new ReadOnlyDictionary<int, IReadOnly>(InternalDict);
return dictionary;
}
}
private class NotReadOnly : IReadOnly
{
public string Name { get; set; }
}
public void AddSomeValue()
{
InternalDict = new Dictionary<int, NotReadOnly>();
InternalDict.Add(1, new NotReadOnly() { Name = "SomeValue" });
}
}
public interface IReadOnly
{
string Name { get; }
}
class Program
{
static void Main(string[] args)
{
ExposesReadOnly exposesReadOnly = new ExposesReadOnly();
exposesReadOnly.AddSomeValue();
Console.WriteLine(exposesReadOnly.PublicList[1].Name);
Console.ReadLine();
exposesReadOnly.PublicList[1].Name = "This is not possible!";
}
}
Hope this helps!
Greets
Another approach for a specific lack of covariance:
A work around for a specific type of useful covariance on idictionary
public static class DictionaryExtensions
{
public static IReadOnlyDictionary<TKey, IEnumerable<TValue>> ToReadOnlyDictionary<TKey, TValue>(
this IDictionary<TKey, List<TValue>> toWrap)
{
var intermediate = toWrap.ToDictionary(a => a.Key, a =>a.Value!=null? a.Value.ToArray().AsEnumerable():null);
var wrapper = new ReadOnlyDictionary<TKey, IEnumerable<TValue>>(intermediate);
return wrapper;
}
}
Depending on your use case, you might be able to get away with exposing a Func<int,IReadOnly>.
public class ExposesReadOnly
{
private Dictionary<int, NotReadOnly> InternalDict { get; set; }
public Func<int,IReadOnly> PublicDictionaryAccess
{
get
{
return (x)=>this.InternalDict[x];
}
}
// This class can be modified internally, but I don't want
// to expose this functionality.
private class NotReadOnly : IReadOnly
{
public string Name { get; set; }
}
}
public interface IReadOnly
{
string Name { get; }
}
来源:https://stackoverflow.com/questions/13593900/how-to-get-around-lack-of-covariance-with-ireadonlydictionary