CUDA API error on Python with Numba

旧巷老猫 提交于 2019-12-24 05:38:04

问题


I'm kind of new to numba and was trying to speed up my monte carlo method with it. Im currently working on Ubuntu 14.04 with GeForce 950M. The CUDA version is 8.0.61.

When I try to run the following code I get some memory associated error from CUDA API

Code:

@cuda.jit
def SIR(rng_states, y, particles, weight, beta, omega, gamma, 
    greater, equal, phi, phi_sub):
    # thread/block index for accessing data
    tx = cuda.threadIdx.x # Thread id in a 1D block = particle index
    ty = cuda.blockIdx.x # Block id in a 1D grid = event index
    bw = cuda.blockDim.x # Block width, i.e. number of threads per block = particle number
    pos = tx + ty * bw # computed flattened index inside the array

    # get current event y_t
    y_current = y[ ty ]

    # get number of time steps
    tn = y_current.size

    # iterator over timestep
    for i in range(1, tn):
       # draw samples
        sirModule_sample_draw(rng_states, particles[ty][i-1], beta, 
                                 omega, particles[ty][i])

        # get weight
        sirModule_weight(particles[ty][i], particles[ty][i-1], weight[ty][i-1], 
                            weight[ty][i], y_current[i], beta, omega, gamma)

        # normalize weight
        weight_sum = arr_sum(weight[ty][i])
        arr_div(weight[ty][i], weight_sum)

        # calculate tau
        sirModule_tau(particles[ty][i], beta, omega, phi, phi_sub)

        # update greater and equal
        greater[ty][i] = greater[ty][i-1]*dot(weight[ty][i-1], phi)
        equal[ty][i] = greater[ty][i-1]*dot(weight[ty][i-1], phi_sub)

def main():

    beta = 1
    omega = 1
    gamma = 2    

    pn = 100
    event_number = 50
    timestep = 100

    y = np.ones((event_number, timestep), dtype = np.int8)
    particles = cuda.to_device(np.zeros((event_number, timestep, pn), dtype = np.float32))
    weight = cuda.to_device(np.ones((event_number, timestep, pn), dtype = np.float32))
    greater = cuda.to_device(np.ones((event_number, timestep), dtype = np.float32))
    equal = cuda.to_device(np.ones((event_number, timestep), dtype = np.float32))

    phi = cuda.to_device(np.zeros(particles[0][0].size, dtype = np.float32))
    phi_sub = cuda.to_device(np.zeros(particles[0][0].size, dtype = np.float32))

    rng_states = create_xoroshiro128p_states(pn, seed=1)

    start = timer()
    SIR[event_number, pn](rng_states, y, particles, weight, beta, 
    omega, gamma, greater, equal, phi, phi_sub)

    vectoradd_time = timer() - start

    print("sirModule1 took %f seconds" % vectoradd_time)

if __name__ == '__main__':
    main()

Then I get

numba.cuda.cudadrv.driver.CudaAPIError: [715] Call to cuMemcpyDtoH results in UNKNOWN_CUDA_ERROR

numba.cuda.cudadrv.driver.CudaAPIError: [715] Call to cuMemFree results in UNKNOWN_CUDA_ERROR

errors....

Did anybody face the same problem? I checked online and some suggest that the problem arise from WDDM TDR but I thought thats for only Windows, right?

The following is the missing part of the code.

import numpy as np
import numba as nb
from timeit import default_timer as timer
from matplotlib import pyplot as pt
import math
from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_normal_float32

"""
Look up table for factorial
"""
LOOKUP_TABLE = cuda.to_device(np.array([
1, 1, 2, 6, 24, 120, 720, 5040, 40320,
362880, 3628800, 39916800, 479001600,
6227020800, 87178291200, 1307674368000,
20922789888000, 355687428096000, 6402373705728000,
121645100408832000, 2432902008176640000], dtype='int64'))


"""
arr_sum - sum element in array
"""
@cuda.jit(device=True)
def arr_sum(arr):
    result = 0
    for i in range(arr.size):
        result = result + arr[i]

    return result


"""
dot - dot product of arr1 and arr2
"""
@cuda.jit(device=True)
def dot(arr1, arr2):
    result = 0
    for i in range(arr1.size):
        result = arr1[i]*arr2[i] + result

    return result


"""
arr_div - divide element in array
"""
@cuda.jit(device=True)
def arr_div(arr, div):
    thread_id = cuda.threadIdx.x

    arr[thread_id] = arr[thread_id]/div

"""
SIR module (sample_draw) - module drawing sample for time t (rampling model)
"""
@cuda.jit(device=True)
def sirModule_sample_draw(rng_states, inp, beta, omega, out):
    """Find a value less than 1 from nomral distribution"""
    thread_id = cuda.threadIdx.x

    # draw candidate sample from normal distribution and store
    # when less than 1
    while True:
        candidate = inp[thread_id] + beta + omega * xoroshiro128p_normal_float32(rng_states, thread_id)

        if candidate < 1:
            out[thread_id] = candidate
            break


"""
SIR module (weight calculation) - weight calculation method
"""
@cuda.jit(device=True)
def sirModule_weight(current, previous, weight, out, y, beta, omega, gamma):
    thread_id = cuda.threadIdx.x
    PI = 3.14159265359

    # calculate the pdf/pmf of given state
    Z = ( current[thread_id] - ( previous[ thread_id ] + beta ) ) / omega
    p1_div_p3 = 1.0 / 2.0 * ( 1.0 + math.erf( Z ) )

    mu = math.log( 1 + math.exp( gamma * current[ thread_id ] ) )    
    p2 = math.exp( mu ) * mu**y / LOOKUP_TABLE[ y ]

    out[thread_id] = weight[thread_id]*p2*p1_div_p3


"""
SIR module (phi distribution calculator)
"""
@cuda.jit(device=True)
def sirModule_tau(current, beta, omega, phi, phi_sub):
thread_id = cuda.threadIdx.x

    # calculate phi distribution and subtract from 1
    Z = ( 1 - ( current[ thread_id ] + beta ) ) / omega
    phi[ thread_id ] = 1.0 / 2.0 * ( 1.0 + math.erf( Z ) )
    phi_sub[ thread_id ] = 1 - phi[ thread_id ]

But these are the device functions. Should this be a source of problem?

And for the error, I get the following error message where line 207 in my code is where I call SIR module.

Traceback (most recent call last):
  File "CUDA_MonteCarlo_Testesr.py", line 214, in <module>
    main()
  File "CUDA_MonteCarlo_Testesr.py", line 207, in main
    omega, gamma, greater, equal, phi, phi_sub)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/compiler.py", line 703, in __call__
cfg(*args)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/compiler.py", line 483, in __call__
sharedmem=self.sharedmem)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/compiler.py", line 585, in _kernel_call
wb()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/compiler.py", line 600, in <lambda>
retr.append(lambda: devary.copy_to_host(val, stream=stream))
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/devicearray.py", line 198, in copy_to_host
_driver.device_to_host(hostary, self, self.alloc_size, stream=stream)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 1597, in device_to_host
fn(host_pointer(dst), device_pointer(src), size, *varargs)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 288, in safe_cuda_api_call
self._check_error(fname, retcode)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 323, in _check_error
raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [715] Call to cuMemcpyDtoH results in UNKNOWN_CUDA_ERROR
Traceback (most recent call last):
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/utils.py", line 647, in _exitfunc
f()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/utils.py", line 571, in __call__
return info.func(*info.args, **(info.kwargs or {}))
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 1099, in deref
mem.free()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 1013, in free
self._finalizer()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/utils.py", line 571, in __call__
return info.func(*info.args, **(info.kwargs or {}))
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 863, in core
deallocations.add_item(dtor, handle, size=bytesize)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 519, in add_item
self.clear()
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 530, in clear
dtor(handle)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 288, in safe_cuda_api_call
self._check_error(fname, retcode)
  File "/home/ryan/anaconda3/envs/py53/lib/python3.5/site-packages/numba/cuda/cudadrv/driver.py", line 323, in _check_error
raise CudaAPIError(retcode, msg)
numba.cuda.cudadrv.driver.CudaAPIError: [715] Call to cuMemFree results in UNKNOWN_CUDA_ERROR

回答1:


I think there may be 2 problems.

  1. I'm not sure your use of LOOKUP_TABLE = cuda.to_device( outside of main is valid. I guess you are trying to create a device array, but I think you should be using numba.cuda.device_array() for that.

  2. You don't seem to be transferring the array y to the device properly for use.

When I make those two changes, the code seems to run without CUDA runtime error for me:

# cat t1.py
import numpy as np
import numba as nb
from timeit import default_timer as timer
# from matplotlib import pyplot as pt
import math
from numba import cuda
from numba.cuda.random import create_xoroshiro128p_states, xoroshiro128p_normal_float32

"""
Look up table for factorial
"""


"""
arr_sum - sum element in array
"""
@cuda.jit(device=True)
def arr_sum(arr):
    result = 0
    for i in range(arr.size):
        result = result + arr[i]

    return result


"""
dot - dot product of arr1 and arr2
"""
@cuda.jit(device=True)
def dot(arr1, arr2):
    result = 0
    for i in range(arr1.size):
        result = arr1[i]*arr2[i] + result

    return result


"""
arr_div - divide element in array
"""
@cuda.jit(device=True)
def arr_div(arr, div):
    thread_id = cuda.threadIdx.x

    arr[thread_id] = arr[thread_id]/div

"""
SIR module (sample_draw) - module drawing sample for time t (rampling model)
"""
@cuda.jit(device=True)
def sirModule_sample_draw(rng_states, inp, beta, omega, out):
    """Find a value less than 1 from nomral distribution"""
    thread_id = cuda.threadIdx.x

    # draw candidate sample from normal distribution and store
    # when less than 1
    while True:
        candidate = inp[thread_id] + beta + omega * xoroshiro128p_normal_float32(rng_states, thread_id)

        if candidate < 1:
            out[thread_id] = candidate
            break


"""
SIR module (weight calculation) - weight calculation method
"""
@cuda.jit(device=True)
def sirModule_weight(current, previous, weight, out, y, beta, omega, gamma, lt):
    thread_id = cuda.threadIdx.x
    PI = 3.14159265359

    # calculate the pdf/pmf of given state
    Z = ( current[thread_id] - ( previous[ thread_id ] + beta ) ) / omega
    p1_div_p3 = 1.0 / 2.0 * ( 1.0 + math.erf( Z ) )

    mu = math.log( 1 + math.exp( gamma * current[ thread_id ] ) )
    p2 =  math.exp( mu ) * mu**y /  lt[ y ]

    out[thread_id] = weight[thread_id]*p2*p1_div_p3


"""
SIR module (phi distribution calculator)
"""
@cuda.jit(device=True)
def sirModule_tau(current, beta, omega, phi, phi_sub):
    thread_id = cuda.threadIdx.x

    # calculate phi distribution and subtract from 1
    Z = ( 1 - ( current[ thread_id ] + beta ) ) / omega
    phi[ thread_id ] = 1.0 / 2.0 * ( 1.0 + math.erf( Z ) )
    phi_sub[ thread_id ] = 1 - phi[ thread_id ]

@cuda.jit
def SIR(rng_states, y, particles, weight, beta, omega, gamma,
    greater, equal, phi, phi_sub, lt):
    # thread/block index for accessing data
    tx = cuda.threadIdx.x # Thread id in a 1D block = particle index
    ty = cuda.blockIdx.x # Block id in a 1D grid = event index
    bw = cuda.blockDim.x # Block width, i.e. number of threads per block = particle number
    pos = tx + ty * bw # computed flattened index inside the array

    # get current event y_t
    y_current = y[ ty ]

    # get number of time steps
    tn = y_current.size

    # iterator over timestep
    for i in range(1, tn):
       # draw samples
        sirModule_sample_draw(rng_states, particles[ty][i-1], beta,
                                 omega, particles[ty][i])

        # get weight
        sirModule_weight(particles[ty][i], particles[ty][i-1], weight[ty][i-1], weight[ty][i], y_current[i], beta, omega, gamma, lt)

        # normalize weight
        weight_sum = arr_sum(weight[ty][i])
        arr_div(weight[ty][i], weight_sum)

        # calculate tau
        sirModule_tau(particles[ty][i], beta, omega, phi, phi_sub)

        # update greater and equal
        greater[ty][i] = greater[ty][i-1]*dot(weight[ty][i-1], phi)
        equal[ty][i] = greater[ty][i-1]*dot(weight[ty][i-1], phi_sub)

def main():

    beta = 1
    omega = 1
    gamma = 2

    pn = 100
    event_number = 50
    timestep = 100


    LOOKUP_TABLE = cuda.to_device(np.array([
    1, 1, 2, 6, 24, 120, 720, 5040, 40320,
    362880, 3628800, 39916800, 479001600,
    6227020800, 87178291200, 1307674368000,
    20922789888000, 355687428096000, 6402373705728000,
    121645100408832000, 2432902008176640000], dtype='int64'))



    hy = np.ones((event_number, timestep), dtype = np.uint32)
    print(hy.size)
    print(hy)
    y = cuda.to_device(hy)
    particles = cuda.to_device(np.zeros((event_number, timestep, pn), dtype = np.float32))
    weight = cuda.to_device(np.ones((event_number, timestep, pn), dtype = np.float32))
    greater = cuda.to_device(np.ones((event_number, timestep), dtype = np.float32))
    equal = cuda.to_device(np.ones((event_number, timestep), dtype = np.float32))

    phi = cuda.to_device(np.zeros(particles[0][0].size, dtype = np.float32))
    phi_sub = cuda.to_device(np.zeros(particles[0][0].size, dtype = np.float32))

    rng_states = create_xoroshiro128p_states(pn, seed=1)

    start = timer()
    SIR[event_number, pn](rng_states, y, particles, weight, beta, omega, gamma, greater, equal, phi, phi_sub, LOOKUP_TABLE)

    vectoradd_time = timer() - start

    print("sirModule1 took %f seconds" % vectoradd_time)
    cuda.synchronize()
if __name__ == '__main__':
    main()

# cuda-memcheck python t1.py
========= CUDA-MEMCHECK
5000
[[1 1 1 ..., 1 1 1]
 [1 1 1 ..., 1 1 1]
 [1 1 1 ..., 1 1 1]
 ...,
 [1 1 1 ..., 1 1 1]
 [1 1 1 ..., 1 1 1]
 [1 1 1 ..., 1 1 1]]
sirModule1 took 0.840958 seconds
========= ERROR SUMMARY: 0 errors
#


来源:https://stackoverflow.com/questions/46017846/cuda-api-error-on-python-with-numba

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!