问题
I've seen some online materials for defining algebraic datatypes like an IntList in Z3. I'm wondering how to define an algebraic datatype with logical constraints. For example, how to define a PosSort that stands for positive integers.
回答1:
Total functions in SMT
Functions are always total in SMT, which raises the question how to encode partial functions such a data type constructor for PosSort
. Thus, I would be surprised if Z3's/SMT's built-in support for algebraic data types supports partial data type constructors (and the SMT-LIB 2.6 standard appears to agree).
Encoding partial functions: the theory
However, not all hope is lost, but you'll probably have to encode ADTs yourself. Assume a total function f: A -> B
, which should model a partial data type constructor function f': A ~> B
whose domain are all a
that satisfy p(a)
. Here, A
could be Int
, B
could be List[A]
, p(a)
could be 0 < a
and f(a)
could be defined as f(a) := a :: Nil
(I am using pseudo-code here, but you should get the idea).
One approach is to ensure that f
is never applied to an a
that is not positive. Depending on where your SMT code comes from, it might be possible to check that constrain before each application of f
(and to raise an error of f
isn't applicable).
The other approach is to underspecify f
and conditionally define it, e.g. along the lines of 0 < a ==> f(a) := a :: Nil
. This way, f
remains total (which, as said before, you'll most likely have to live with), but its value is undefined for a <= 0
. Hence, when you try to prove something about f(a)
, e.g. that head(f(a)) == a
, then this should fail (assuming that head(a :: _)
is defined as a
).
Encoding partial functions: a practical example
I am too lazy to code up an example in SMT, but this encoding of an integer list (in a verification language called Viper) should give you a very concrete idea of how to encode an integer list using uninterpreted functions and axioms. The example can basically be translated to SMT-LIB in a one-to-one manner.
Changing that example such that it axiomatises a list of positive integers is straight-forward: just add the constrain head < 0
to every axiom that talks about list heads. I.e. use the following alternative axioms:
axiom destruct_over_construct_Cons {
forall head: Int, tail: list :: {Cons(head, tail)}
0 < head ==>
head_Cons(Cons(head, tail)) == head
&& tail_Cons(Cons(head, tail)) == tail
}
...
axiom type_of_Cons {
forall head: Int, tail: list ::
0 < head ==> type(Cons(head, tail)) == type_Cons()
}
If you run the example online with these changes, the test method test_quantifiers()
should fail immediately. Adding the necessary constraints on the list elements, i.e. changing it to
method test_quantifiers() {
/* The elements of a deconstructed Cons are equivalent to the corresponding arguments of Cons */
assert forall head: Int, tail: list, xs: list ::
0 < head ==>
is_Cons(xs) ==> (head == head_Cons(xs) && tail == tail_Cons(xs) <==> Cons(head, tail) == xs)
/* Two Cons are equal iff their constructors' arguments are equal */
assert forall head1: Int, head2: Int, tail1: list, tail2: list ::
(0 < head1 && 0 < head2) ==>
(Cons(head1, tail1) == Cons(head2, tail2)
<==>
head1 == head2 && tail1 == tail2)
}
should make the verification succeed again.
回答2:
What you are looking for is called predicate-subtyping; and as far as I know Yices is the only SMT solver that supported it out of the box: http://yices.csl.sri.com/old/language.shtml
In particular, see the examples here: http://yices.csl.sri.com/old/language.shtml#language_dependent_types
Unfortunately, this is "old" Yices, and I don't think this particular input-language is supported any longer. As Malte mentioned, SMTLib doesn't have support for predicate subtyping either.
Assuming your output SMTLib is "generated," you can insert "checks" to make sure all elements remain within the domain. But this is rather cumbersome and it is not clear how to deal with partiality. Underspecification is a nice trick, but it can get really hairy and lead to specifications that are very hard to debug.
If you really need predicate subtyping, perhaps SMT solvers are not the best choice for your problem domain. Theorem provers, dependently typed languages, etc. might be more suitable. A practical example, for instance, is the LiquidHaskell system for Haskell programs, which allows predicates to be attached to types to do precisely what you are trying; and uses an SMT-solver to discharge the relevant conditions: https://ucsd-progsys.github.io/liquidhaskell-blog/
If you want to stick to SMT-solvers and don't mind using an older system, I'd recommend Yices with its support for predicate subtyping for modeling such problems. It was (and still is) one of the finest implementations of this very idea in the context of SMT-solving.
来源:https://stackoverflow.com/questions/49682830/defining-algebraic-datatypes-with-constraints-in-z3