How can I one hot encode in Python?

▼魔方 西西 提交于 2019-11-26 02:42:54

问题


I have a machine learning classification problem with 80% categorical variables. Must I use one hot encoding if I want to use some classifier for the classification? Can i pass the data to a classifier without the encoding?

I am trying to do the following for feature selection:

  1. I read the train file:

    num_rows_to_read = 10000
    train_small = pd.read_csv(\"../../dataset/train.csv\",   nrows=num_rows_to_read)
    
  2. I change the type of the categorical features to \'category\':

    non_categorial_features = [\'orig_destination_distance\',
                              \'srch_adults_cnt\',
                              \'srch_children_cnt\',
                              \'srch_rm_cnt\',
                              \'cnt\']
    
    for categorical_feature in list(train_small.columns):
        if categorical_feature not in non_categorial_features:
            train_small[categorical_feature] = train_small[categorical_feature].astype(\'category\')
    
  3. I use one hot encoding:

    train_small_with_dummies = pd.get_dummies(train_small, sparse=True)
    

The problem is that the 3\'rd part often get stuck, although I am using a strong machine.

Thus, without the one hot encoding I can\'t do any feature selection, for determining the importance of the features.

What do you recommend?


回答1:


Approach 1: You can use get_dummies on pandas dataframe.

Example 1:

import pandas as pd
s = pd.Series(list('abca'))
pd.get_dummies(s)
Out[]: 
     a    b    c
0  1.0  0.0  0.0
1  0.0  1.0  0.0
2  0.0  0.0  1.0
3  1.0  0.0  0.0

Example 2:

The following will transform a given column into one hot. Use prefix to have multiple dummies.

import pandas as pd

df = pd.DataFrame({
          'A':['a','b','a'],
          'B':['b','a','c']
        })
df
Out[]: 
   A  B
0  a  b
1  b  a
2  a  c

# Get one hot encoding of columns B
one_hot = pd.get_dummies(df['B'])
# Drop column B as it is now encoded
df = df.drop('B',axis = 1)
# Join the encoded df
df = df.join(one_hot)
df  
Out[]: 
       A  a  b  c
    0  a  0  1  0
    1  b  1  0  0
    2  a  0  0  1

Approach 2: Use Scikit-learn

Given a dataset with three features and four samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding.

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()
>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])   
OneHotEncoder(categorical_features='all', dtype=<class 'numpy.float64'>,
   handle_unknown='error', n_values='auto', sparse=True)
>>> enc.n_values_
array([2, 3, 4])
>>> enc.feature_indices_
array([0, 2, 5, 9], dtype=int32)
>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])

Here is the link for this example: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html




回答2:


You can do it with numpy.eye and a using the array element selection mechanism:

import numpy as np
nb_classes = 6
data = [[2, 3, 4, 0]]

def indices_to_one_hot(data, nb_classes):
    """Convert an iterable of indices to one-hot encoded labels."""
    targets = np.array(data).reshape(-1)
    return np.eye(nb_classes)[targets]

The the return value of indices_to_one_hot(nb_classes, data) is now

array([[[ 0.,  0.,  1.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  1.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  1.,  0.],
        [ 1.,  0.,  0.,  0.,  0.,  0.]]])

The .reshape(-1) is there to make sure you have the right labels format (you might also have [[2], [3], [4], [0]]).




回答3:


Firstly, easiest way to one hot encode: use Sklearn.

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

Secondly, I don't think using pandas to one hot encode is that simple (unconfirmed though)

Creating dummy variables in pandas for python

Lastly, is it necessary for you to one hot encode? One hot encoding exponentially increases the number of features, drastically increasing the run time of any classifier or anything else you are going to run. Especially when each categorical feature has many levels. Instead you can do dummy coding.

Using dummy encoding usually works well, for much less run time and complexity. A wise prof once told me, 'Less is More'.

Here's the code for my custom encoding function if you want.

from sklearn.preprocessing import LabelEncoder

#Auto encodes any dataframe column of type category or object.
def dummyEncode(df):
        columnsToEncode = list(df.select_dtypes(include=['category','object']))
        le = LabelEncoder()
        for feature in columnsToEncode:
            try:
                df[feature] = le.fit_transform(df[feature])
            except:
                print('Error encoding '+feature)
        return df

EDIT: Comparison to be clearer:

One-hot encoding: convert n levels to n-1 columns.

Index  Animal         Index  cat  mouse
  1     dog             1     0     0
  2     cat       -->   2     1     0
  3    mouse            3     0     1

You can see how this will explode your memory if you have many different types (or levels) in your categorical feature. Keep in mind, this is just ONE column.

Dummy Coding:

Index  Animal         Index  Animal
  1     dog             1      0   
  2     cat       -->   2      1 
  3    mouse            3      2

Convert to numerical representations instead. Greatly saves feature space, at the cost of a bit of accuracy.




回答4:


Much easier to use Pandas for basic one-hot encoding. If you're looking for more options you can use scikit-learn.

For basic one-hot encoding with Pandas you simply pass your data frame into the get_dummies function.

For example, if I have a dataframe called imdb_movies:

...and I want to one-hot encode the Rated column, I simply do this:

pd.get_dummies(imdb_movies.Rated)

This returns a new dataframe with a column for every "level" of rating that exists, along with either a 1 or 0 specifying the presence of that rating for a given observation.

Usually, we want this to be part of the original dataframe. In this case we simply attach our new dummy coded frame onto the original frame using "column-binding.

We can column-bind by using Pandas concat function:

rated_dummies = pd.get_dummies(imdb_movies.Rated)
pd.concat([imdb_movies, rated_dummies], axis=1)

We can now run analysis on our full dataframe.

SIMPLE UTILITY FUNCTION

I would recommend making yourself a utility function to do this quickly:

def encode_and_bind(original_dataframe, feature_to_encode):
    dummies = pd.get_dummies(original_dataframe[[feature_to_encode]])
    res = pd.concat([original_dataframe, dummies], axis=1)
    return(res)

Usage:

encode_and_bind(imdb_movies, 'Rated')

Result:

Also, as per @pmalbu comment, if you would like the function to remove the original feature_to_encode then use this version:

def encode_and_bind(original_dataframe, feature_to_encode):
    dummies = pd.get_dummies(original_dataframe[[feature_to_encode]])
    res = pd.concat([original_dataframe, dummies], axis=1)
    res = res.drop([feature_to_encode], axis=1)
    return(res) 



回答5:


One hot encoding with pandas is very easy:

def one_hot(df, cols):
    """
    @param df pandas DataFrame
    @param cols a list of columns to encode 
    @return a DataFrame with one-hot encoding
    """
    for each in cols:
        dummies = pd.get_dummies(df[each], prefix=each, drop_first=False)
        df = pd.concat([df, dummies], axis=1)
    return df

EDIT:

Another way to one_hot using sklearn's LabelBinarizer :

from sklearn.preprocessing import LabelBinarizer 
label_binarizer = LabelBinarizer()
label_binarizer.fit(all_your_labels_list) # need to be global or remembered to use it later

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    return label_binarizer.transform(x)



回答6:


You can use numpy.eye function.

import numpy as np

def one_hot_encode(x, n_classes):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
     """
    return np.eye(n_classes)[x]

def main():
    list = [0,1,2,3,4,3,2,1,0]
    n_classes = 5
    one_hot_list = one_hot_encode(list, n_classes)
    print(one_hot_list)

if __name__ == "__main__":
    main()

Result

D:\Desktop>python test.py
[[ 1.  0.  0.  0.  0.]
 [ 0.  1.  0.  0.  0.]
 [ 0.  0.  1.  0.  0.]
 [ 0.  0.  0.  1.  0.]
 [ 0.  0.  0.  0.  1.]
 [ 0.  0.  0.  1.  0.]
 [ 0.  0.  1.  0.  0.]
 [ 0.  1.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.]]



回答7:


pandas as has inbuilt function "get_dummies" to get one hot encoding of that particular column/s.

one line code for one-hot-encoding:

df=pd.concat([df,pd.get_dummies(df['column name'],prefix='column name')],axis=1).drop(['column name'],axis=1)



回答8:


One-hot encoding requires bit more than converting the values to indicator variables. Typically ML process requires you to apply this coding several times to validation or test data sets and applying the model you construct to real-time observed data. You should store the mapping (transform) that was used to construct the model. A good solution would use the DictVectorizer or LabelEncoder (followed by get_dummies. Here is a function that you can use:

def oneHotEncode2(df, le_dict = {}):
    if not le_dict:
        columnsToEncode = list(df.select_dtypes(include=['category','object']))
        train = True;
    else:
        columnsToEncode = le_dict.keys()   
        train = False;

    for feature in columnsToEncode:
        if train:
            le_dict[feature] = LabelEncoder()
        try:
            if train:
                df[feature] = le_dict[feature].fit_transform(df[feature])
            else:
                df[feature] = le_dict[feature].transform(df[feature])

            df = pd.concat([df, 
                              pd.get_dummies(df[feature]).rename(columns=lambda x: feature + '_' + str(x))], axis=1)
            df = df.drop(feature, axis=1)
        except:
            print('Error encoding '+feature)
            #df[feature]  = df[feature].convert_objects(convert_numeric='force')
            df[feature]  = df[feature].apply(pd.to_numeric, errors='coerce')
    return (df, le_dict)

This works on a pandas dataframe and for each column of the dataframe it creates and returns a mapping back. So you would call it like this:

train_data, le_dict = oneHotEncode2(train_data)

Then on the test data, the call is made by passing the dictionary returned back from training:

test_data, _ = oneHotEncode2(test_data, le_dict)

An equivalent method is to use DictVectorizer. A related post on the same is on my blog. I mention it here since it provides some reasoning behind this approach over simply using get_dummies post (disclosure: this is my own blog).




回答9:


Here is a solution using DictVectorizer and the Pandas DataFrame.to_dict('records') method.

>>> import pandas as pd
>>> X = pd.DataFrame({'income': [100000,110000,90000,30000,14000,50000],
                      'country':['US', 'CAN', 'US', 'CAN', 'MEX', 'US'],
                      'race':['White', 'Black', 'Latino', 'White', 'White', 'Black']
                     })

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer()
>>> qualitative_features = ['country','race']
>>> X_qual = v.fit_transform(X[qualitative_features].to_dict('records'))
>>> v.vocabulary_
{'country=CAN': 0,
 'country=MEX': 1,
 'country=US': 2,
 'race=Black': 3,
 'race=Latino': 4,
 'race=White': 5}

>>> X_qual.toarray()
array([[ 0.,  0.,  1.,  0.,  0.,  1.],
       [ 1.,  0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  1.,  0.],
       [ 1.,  0.,  0.,  0.,  0.,  1.],
       [ 0.,  1.,  0.,  0.,  0.,  1.],
       [ 0.,  0.,  1.,  1.,  0.,  0.]])



回答10:


I know I'm late to this party, but the simplest way to hot encode a dataframe in an automated way is to use this function:

def hot_encode(df):
    obj_df = df.select_dtypes(include=['object'])
    return pd.get_dummies(df, columns=obj_df.columns).values



回答11:


You can pass the data to catboost classifier without encoding. Catboost handles categorical variables itself by performing one-hot and target expanding mean encoding.




回答12:


To add to other questions, let me provide how I did it with a Python 2.0 function using Numpy:

def one_hot(y_):
    # Function to encode output labels from number indexes 
    # e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]

    y_ = y_.reshape(len(y_))
    n_values = np.max(y_) + 1
    return np.eye(n_values)[np.array(y_, dtype=np.int32)]  # Returns FLOATS

The line n_values = np.max(y_) + 1 could be hard-coded for you to use the good number of neurons in case you use mini-batches for example.

Demo project/tutorial where this function has been used: https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition




回答13:


This works for me:

pandas.factorize( ['B', 'C', 'D', 'B'] )[0]

Output:

[0, 1, 2, 0]



回答14:


I used this in my acoustic model: probably this helps in ur model.

def one_hot_encoding(x, n_out):
    x = x.astype(int)  
    shape = x.shape
    x = x.flatten()
    N = len(x)
    x_categ = np.zeros((N,n_out))
    x_categ[np.arange(N), x] = 1
    return x_categ.reshape((shape)+(n_out,))



回答15:


It can and it should be easy as :

class OneHotEncoder:
    def __init__(self,optionKeys):
        length=len(optionKeys)
        self.__dict__={optionKeys[j]:[0 if i!=j else 1 for i in range(length)] for j in range(length)}

Usage :

ohe=OneHotEncoder(["A","B","C","D"])
print(ohe.A)
print(ohe.D)



回答16:


You can do the following as well. Note for the below you don't have to use pd.concat.

import pandas as pd 
# intialise data of lists. 
data = {'Color':['Red', 'Yellow', 'Red', 'Yellow'], 'Length':[20.1, 21.1, 19.1, 18.1],
       'Group':[1,2,1,2]} 

# Create DataFrame 
df = pd.DataFrame(data) 

for _c in df.select_dtypes(include=['object']).columns:
    print(_c)
    df[_c]  = pd.Categorical(df[_c])
df_transformed = pd.get_dummies(df)
df_transformed

You can also change explicit columns to categorical. For example, here I am changing the Color and Group

import pandas as pd 
# intialise data of lists. 
data = {'Color':['Red', 'Yellow', 'Red', 'Yellow'], 'Length':[20.1, 21.1, 19.1, 18.1],
       'Group':[1,2,1,2]} 

# Create DataFrame 
df = pd.DataFrame(data) 
columns_to_change = list(df.select_dtypes(include=['object']).columns)
columns_to_change.append('Group')
for _c in columns_to_change:
    print(_c)
    df[_c]  = pd.Categorical(df[_c])
df_transformed = pd.get_dummies(df)
df_transformed



回答17:


Here i tried with this approach :

import numpy as np
#converting to one_hot





def one_hot_encoder(value, datal):

    datal[value] = 1

    return datal


def _one_hot_values(labels_data):
    encoded = [0] * len(labels_data)

    for j, i in enumerate(labels_data):
        max_value = [0] * (np.max(labels_data) + 1)

        encoded[j] = one_hot_encoder(i, max_value)

    return np.array(encoded)


来源:https://stackoverflow.com/questions/37292872/how-can-i-one-hot-encode-in-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!