问题
I am new to python and have a pretty simple (hopefully straightforward!) question.
Say that I have a data frame with 3 columns: time (which is in the format YYYY-MM-DDTHH:MM:SSZ), device_id, and rain but I need the first column, "time", to become three columns of "day", "month", and "year" with values from the timestamp.
So the original data frame looks something like this:
time device_id rain
2016-12-27T00:00:00Z 9b839362-b06d-4217-96f5-f261c1ada8d6 NaN
2016-12-28T00:00:00Z 9b839362-b06d-4217-96f5-f261c1ada8d6 0.2
2016-12-29T00:00:00Z 9b839362-b06d-4217-96f5-f261c1ada8d6 NaN
2016-12-30T00:00:00Z 9b839362-b06d-4217-96f5-f261c1ada8d6 NaN
2016-12-31T00:00:00Z 9b839362-b06d-4217-96f5-f261c1ada8d6 NaN
But I'm trying to get the data frame to look like this:
day month year device_id rain
27 12 2016 9b839362-b06d-4217-96f5-f261c1ada8d6 NaN
28 12 2016 9b839362-b06d-4217-96f5-f261c1ada8d6 0.2
29 12 2016 9b839362-b06d-4217-96f5-f261c1ada8d6 NaN
30 12 2016 9b839362-b06d-4217-96f5-f261c1ada8d6 NaN
31 12 2016 9b839362-b06d-4217-96f5-f261c1ada8d6 NaN
I don't care about the hour/seconds/minutes but need these values from the original time stamp, and I don't even know where to start. Please help!
Here's some reproducible code to get started:
>> import pandas as pd
>> df = pd.DataFrame([['2016-12-27T00:00:00Z', '9b839362-b06d-4217-96f5-f261c1ada8d6', 'NaN']], columns=['time', 'device_id', 'rain'])
>> print df
2016-12-27T00:00:00Z 9b849362-b06d-4217-96f5-f261c1ada8d6 NaN
回答1:
Just split the time with -
or T
and the first three elements should correspond to the year, month and day column, concatenate it with the other two columns will get what you need:
pd.concat([df.drop('time', axis = 1),
(df.time.str.split("-|T").str[:3].apply(pd.Series)
.rename(columns={0:'year', 1:'month', 2:'day'}))], axis = 1)
An alternative close to @nlassaux's approach would be:
df['time'] = pd.to_datetime(df['time'])
df['year'] = df.time.dt.year
df['month'] = df.time.dt.month
df['day'] = df.time.dt.day
df.drop('time', axis=1, inplace=True)
回答2:
The cleanest way is to use builtin pandas datetime functions.
First, convert the column to datetime:
df["time"] = pd.to_datetime(df["time"])
Then, extract your information:
df["day"] = df['time'].map(lambda x: x.day)
df["month"] = df['time'].map(lambda x: x.month)
df["year"] = df['time'].map(lambda x: x.year)
来源:https://stackoverflow.com/questions/41455967/convert-datetime-string-to-new-columns-of-day-month-year-in-pandas-data-frame