问题
I'm looking for an elegant way to change multiple vectors' datatypes in R.
I'm working with an educational dataset: 426 students' answers to eight multiple choice questions (1 = correct, 0 = incorrect), plus a column indicating which instructor (1, 2, or 3) taught their course.
As it stands, my data is sitting pretty in data.df, like this:
str(data.df)
'data.frame': 426 obs. of 9 variables:
$ ques01: int 1 1 1 1 1 1 0 0 0 1 ...
$ ques02: int 0 0 1 1 1 1 1 1 1 1 ...
$ ques03: int 0 0 1 1 0 0 1 1 0 1 ...
$ ques04: int 1 0 1 1 1 1 1 1 1 1 ...
$ ques05: int 0 0 0 0 1 0 0 0 0 0 ...
$ ques06: int 1 0 1 1 0 1 1 1 1 1 ...
$ ques07: int 0 0 1 1 0 1 1 0 0 1 ...
$ ques08: int 0 0 1 1 1 0 1 1 0 1 ...
$ inst : num 1 1 1 1 1 1 1 1 1 1 ...
But those ques0x values aren't really integers. Rather, I think it's better to have R treat them as experimental factors. Same goes for the "inst" values.
I'd love to turn all those ints and nums into factors
Ideally, an elegant solution should produce a dataframe—I call it factorData.df—that looks like this:
str(factorData.df)
'data.frame': 426 obs. of 9 variables:
$ ques01: Factor w/ 2 levels "0","1": 2 2 2 2 2 2 1 1 1 2 ...
$ ques02: Factor w/ 2 levels "0","1": 1 1 2 2 2 2 2 2 2 2 ...
$ ques03: Factor w/ 2 levels "0","1": 1 1 2 2 1 1 2 2 1 2 ...
$ ques04: Factor w/ 2 levels "0","1": 2 1 2 2 2 2 2 2 2 2 ...
$ ques05: Factor w/ 2 levels "0","1": 1 1 1 1 2 1 1 1 1 1 ...
$ ques06: Factor w/ 2 levels "0","1": 2 1 2 2 1 2 2 2 2 2 ...
$ ques07: Factor w/ 2 levels "0","1": 1 1 2 2 1 2 2 1 1 2 ...
$ ques08: Factor w/ 2 levels "0","1": 1 1 2 2 2 1 2 2 1 2 ...
$ inst : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
I'm fairly certain that whatever solution you folks come up with, it ought to be easy to generalize to any n number of variables that'd need to get reclassified, and would work across most common conversions (int -> factor and num -> int, for example).
No matter what solution you folks generate, it's bound to be more elegant than mine
Because my current clunky code is just 9 separate factor() statements, one for each variable, like this
factorData.df$ques01
I'm brand-new to R, programming, and stackoverflow. Please be gentle, and thanks in advance for your help!
回答1:
This was also answered in R-Help.
I imagine that there's a better way to do it, but here are two options:
# use a sample data set
> str(cars)
'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...
> data.df <- cars
You can use lapply:
> data.df <- data.frame(lapply(data.df, factor))
Or a for statement:
> for(i in 1:ncol(data.df)) data.df[,i] <- as.factor(data.df[,i])
In either case, you end up with what you want:
> str(data.df)
'data.frame': 50 obs. of 2 variables:
$ speed: Factor w/ 19 levels "4","7","8","9",..: 1 1 2 2 3 4 5 5 5 6 ...
$ dist : Factor w/ 35 levels "2","4","10","14",..: 1 3 2 9 5 3 7 11 14 6 ...
回答2:
I found an alternative solution in the plyr package:
# load the package and data
> library(plyr)
> data.df <- cars
Use the colwise function:
> data.df <- colwise(factor)(data.df)
> str(data.df)
'data.frame': 50 obs. of 2 variables:
$ speed: Factor w/ 19 levels "4","7","8","9",..: 1 1 2 2 3 4 5 5 5 6 ...
$ dist : Factor w/ 35 levels "2","4","10","14",..: 1 3 2 9 5 3 7 11 14 6 ...
Incidentally, if you look inside the colwise function, it just uses lapply:
df <- as.data.frame(lapply(filtered, .fun, ...))
来源:https://stackoverflow.com/questions/1489199/how-can-i-take-multiple-vectors-and-recode-their-datatypes-in-r