Implementing a Lookup Table

蹲街弑〆低调 提交于 2019-12-19 04:40:51

问题


I am working on a custom data structure and I am currently in the beta testing process: The data will be stored within an array and this array can be represented as a 4D, 2D & 1D array. These three arrays are declared within a union since it represents the same memory addressing. Here is the declaration to my class:

SomeClass.h

#ifndef SomeClass_H
#define SomeClass_H

class SomeClass {
public:
    static const unsigned V1D_SIZE;   // Single Or Linear Array Representation : Size 256 - 256 Elements
    static const unsigned V2D_SIZE;   // 2D Array [16][16]                     : Size 16  - 256 Elements
    static const unsigned V4D_SIZE;   // 4D Array [4][4][4][4]                 : Size 4   - 256 Elements

    enum Index {
        HEX_UNDER_FLOW = -0x01,
        HEX_0 = 0x00,
        HEX_1 = 0x01,
        HEX_2 = 0x02,
        HEX_3 = 0x03,
        HEX_4 = 0x04,
        HEX_5 = 0x05,
        HEX_6 = 0x06,
        HEX_7 = 0x07,
        HEX_8 = 0x08,
        HEX_9 = 0x09,
        HEX_A = 0x0A,
        HEX_B = 0x0B,
        HEX_C = 0x0C,
        HEX_D = 0x0D,
        HEX_E = 0x0E,
        HEX_F = 0x0F,
        HEX_OVER_FLOW = 0x10
    }; // Index

    // Will Be Private After Testing.
    union {
        int m_p256[256];
        int m_p16[16][16];
        int m_p4[4][4][4][4];
    };

private:
    struct CrossReference {
        Index A;
        Index B;

        CrossReference() {}
        CrossReference( const Index& A_, const Index& B_ ) : A(A_), B(B_) {}
    } typedef CR;


    // Current Not Used Only Here To Illustrate A Simple Representation - May Use Or Incorporate Later
    struct Cubes {
        unsigned box;     // 0 - 3    - w
        unsigned slice;   // 0 - 15   - z 
        unsigned row;     // 0 - 15   - y
        unsigned coloumn; // 0 - 15   - x
    } m_cubes;


    CR m_cr[256];

public: 
    SomeClass();
    ~SomeClass();

    const CR& getIndexTable() const;
    void displayIndexTable() const;

private:
    // Must Be Called In Constructor First!
    void initializeCrossReference();

}; // SomeClass

#endif // SomeClass

I need to generate a reference look up table of coordinate value pairs of this 4D structure to implement its 1D version.

To illustrate the index traversal you can refer to these images for a visual representation:

Note: the {x,y,z,w} in this image does not represent the actual 4D array in memory: it is just a visualization! In Memory the 4D array would be as this: array[box][slice][row][column] and this image represents 1 box within the 4D array.

Note: This image is a 2D visual representation of all 4 boxes that are described in the top image. The colored text in both images correspond to the appropriate index.

The second image is a 2D flat grid image representation of this 4D array data structure. We can use this image to generate the coordinates for this look up table.

Each quarter of this image represents 1 box. Top Left (starting) is box 0, top right box 1, bottom left box 2, bottom right box 3. Each box, can be broken down the same way for each slice. Top Left (starting) slice 0, top right slice 1, bottom left slice 2, bottom right slice 3. Then when working in each slice the traversal is row - col and once col = 3, we move down to the next row. So after we complete a single slice we have to jump our location depending on the current slices index. The same goes for boxes.

Here are a couple of examples of traversing this table to generate a set of index coordinate values in hex notation:

array[2][3][0][1] our [A,B] hex value would be [0x0C, 0x05] 
array[1][1][3][3] our [A,B] hex value would be [0x03, 0x0F]

I am in the process of designing a function to generate this look up table. I have done this manually here:

void SomeClass::initializeCrossReference() {
    //////////////////////////////////
    // Upper Half Of Grid Structure //
    //////////////////////////////////  

    //  Grid Coordinates //
    // Linear Or 1D Array Representation - Mapped From type[16][16] which is a 
    // 2D Compressed Version of type[4][4][4][4] - 
    // NOTE: This does not represent 4D Space; it represents a cluster of 4 (3D Cubes). 
    // In the declaration of the class there are two multi deminsional arrays that
    // are shared in memory through a nameless union.

    //      ROW              COL          

    // BOX - 0
    // Slice - 0
    // Row - 0                              // Column Coordinates
    m_cr[0].A  = HEX_0;  m_cr[0].B = HEX_0;  // col 0
    m_cr[1].A  = HEX_0;  m_cr[1].B = HEX_1;  // col 1
    m_cr[2].A  = HEX_0;  m_cr[2].B = HEX_2;  // col 2
    m_cr[3].A  = HEX_0;  m_cr[3].B = HEX_3;  // col 3
    // Row - 1
    m_cr[4].A  = HEX_1;  m_cr[4].B = HEX_0;
    m_cr[5].A  = HEX_1;  m_cr[5].B = HEX_1;
    m_cr[6].A  = HEX_1;  m_cr[6].B = HEX_2;
    m_cr[7].A  = HEX_1;  m_cr[7].B = HEX_3;
    // Row - 2
    m_cr[8].A  = HEX_2;  m_cr[8].B  = HEX_0;
    m_cr[9].A  = HEX_2;  m_cr[9].B  = HEX_1;
    m_cr[10].A = HEX_2;  m_cr[10].B = HEX_2;
    m_cr[11].A = HEX_2;  m_cr[11].B = HEX_3;
    // Row - 3
    m_cr[12].A = HEX_3;  m_cr[12].B = HEX_0;    
    m_cr[13].A = HEX_3;  m_cr[13].B = HEX_1;
    m_cr[14].A = HEX_3;  m_cr[14].B = HEX_2;
    m_cr[15].A = HEX_3;  m_cr[15].B = HEX_3;

    // Slice - 1
    // Row - 0
    m_cr[16].A = HEX_0;  m_cr[16].B = HEX_4;
    m_cr[17].A = HEX_0;  m_cr[17].B = HEX_5;
    m_cr[18].A = HEX_0;  m_cr[18].B = HEX_6;    
    m_cr[19].A = HEX_0;  m_cr[19].B = HEX_7;
    // Row - 1
    m_cr[20].A = HEX_1;  m_cr[20].B = HEX_4;
    m_cr[21].A = HEX_1;  m_cr[21].B = HEX_5;
    m_cr[22].A = HEX_1;  m_cr[22].B = HEX_6;
    m_cr[23].A = HEX_1;  m_cr[23].B = HEX_7;
    // Row - 2;
    m_cr[24].A = HEX_2;  m_cr[24].B = HEX_4;
    m_cr[25].A = HEX_2;  m_cr[25].B = HEX_5;
    m_cr[26].A = HEX_2;  m_cr[26].B = HEX_6;
    m_cr[27].A = HEX_2;  m_cr[27].B = HEX_7;
    // Row - 3
    m_cr[28].A = HEX_3;  m_cr[28].B = HEX_4;
    m_cr[29].A = HEX_3;  m_cr[29].B = HEX_5;
    m_cr[30].A = HEX_3;  m_cr[30].B = HEX_6;
    m_cr[31].A = HEX_3;  m_cr[31].B = HEX_7;

    // Slice - 2
    // Row - 0
    m_cr[32].A = HEX_4;  m_cr[32].B = HEX_0;
    m_cr[33].A = HEX_4;  m_cr[33].B = HEX_1;
    m_cr[34].A = HEX_4;  m_cr[34].B = HEX_2;
    m_cr[35].A = HEX_4;  m_cr[35].B = HEX_3;
    // Row - 1;
    m_cr[36].A = HEX_5;  m_cr[36].B = HEX_0;
    m_cr[37].A = HEX_5;  m_cr[37].B = HEX_1;
    m_cr[38].A = HEX_5;  m_cr[38].B = HEX_2;
    m_cr[39].A = HEX_5;  m_cr[39].B = HEX_3;
    // Row - 2;
    m_cr[40].A = HEX_6;  m_cr[40].B = HEX_0;
    m_cr[41].A = HEX_6;  m_cr[41].B = HEX_1;
    m_cr[42].A = HEX_6;  m_cr[42].B = HEX_2;
    m_cr[43].A = HEX_6;  m_cr[43].B = HEX_3;
    // Row - 3
    m_cr[44].A = HEX_7;  m_cr[44].B = HEX_0;
    m_cr[45].A = HEX_7;  m_cr[45].B = HEX_1;
    m_cr[46].A = HEX_7;  m_cr[46].B = HEX_2;
    m_cr[47].A = HEX_7;  m_cr[47].B = HEX_3;

    // Slice - 3
    // Row - 0
    m_cr[48].A = HEX_4;  m_cr[48].B = HEX_4;
    m_cr[49].A = HEX_4;  m_cr[49].B = HEX_5;
    m_cr[50].A = HEX_4;  m_cr[50].B = HEX_6;
    m_cr[51].A = HEX_4;  m_cr[51].B = HEX_7;
    // Row - 1
    m_cr[52].A = HEX_5;  m_cr[52].B = HEX_4;
    m_cr[53].A = HEX_5;  m_cr[53].B = HEX_5;
    m_cr[54].A = HEX_5;  m_cr[54].B = HEX_6;
    m_cr[55].A = HEX_5;  m_cr[55].B = HEX_7;
    // Row - 2;
    m_cr[56].A = HEX_6;  m_cr[56].B = HEX_4;
    m_cr[57].A = HEX_6;  m_cr[57].B = HEX_5;
    m_cr[58].A = HEX_6;  m_cr[58].B = HEX_6;
    m_cr[59].A = HEX_6;  m_cr[59].B = HEX_7;
    // Row - 3
    m_cr[60].A = HEX_7;  m_cr[60].B = HEX_4;
    m_cr[61].A = HEX_7;  m_cr[61].B = HEX_5;
    m_cr[62].A = HEX_7;  m_cr[62].B = HEX_6;
    m_cr[63].A = HEX_7;  m_cr[63].B = HEX_7;

    // BOX - 1
    // Slice - 0
    // Row - 0
    m_cr[64].A = HEX_0;  m_cr[64].B = HEX_8;
    m_cr[65].A = HEX_0;  m_cr[65].B = HEX_9;
    m_cr[66].A = HEX_0;  m_cr[66].B = HEX_A;
    m_cr[67].A = HEX_0;  m_cr[67].B = HEX_B;
    // Row - 1
    m_cr[68].A = HEX_1;  m_cr[68].B = HEX_8;
    m_cr[69].A = HEX_1;  m_cr[69].B = HEX_9;
    m_cr[70].A = HEX_1;  m_cr[70].B = HEX_A;
    m_cr[71].A = HEX_1;  m_cr[71].B = HEX_B;
    // Row - 2
    m_cr[72].A = HEX_2;  m_cr[72].B = HEX_8;
    m_cr[73].A = HEX_2;  m_cr[73].B = HEX_9;
    m_cr[74].A = HEX_2;  m_cr[74].B = HEX_A;
    m_cr[75].A = HEX_2;  m_cr[75].B = HEX_B;
    // Row - 3
    m_cr[76].A = HEX_3;  m_cr[76].B = HEX_8;
    m_cr[77].A = HEX_3;  m_cr[77].B = HEX_9;
    m_cr[78].A = HEX_3;  m_cr[78].B = HEX_A;
    m_cr[79].A = HEX_3;  m_cr[79].B = HEX_B;

    // Slice - 1
    // Row - 0
    m_cr[80].A = HEX_0;  m_cr[80].B = HEX_C;
    m_cr[81].A = HEX_0;  m_cr[81].B = HEX_D;
    m_cr[82].A = HEX_0;  m_cr[82].B = HEX_E;
    m_cr[83].A = HEX_0;  m_cr[83].B = HEX_F;
    // Row - 1
    m_cr[84].A = HEX_1;  m_cr[84].B = HEX_C;
    m_cr[85].A = HEX_1;  m_cr[85].B = HEX_D;
    m_cr[86].A = HEX_1;  m_cr[86].B = HEX_E;
    m_cr[87].A = HEX_1;  m_cr[87].B = HEX_F;
    // Row - 2
    m_cr[88].A = HEX_2;  m_cr[88].B = HEX_C;
    m_cr[89].A = HEX_2;  m_cr[89].B = HEX_D;
    m_cr[90].A = HEX_2;  m_cr[90].B = HEX_E;
    m_cr[91].A = HEX_2;  m_cr[91].B = HEX_F;
    // Row - 3
    m_cr[92].A = HEX_3;  m_cr[92].B = HEX_C;
    m_cr[93].A = HEX_3;  m_cr[93].B = HEX_D;
    m_cr[94].A = HEX_3;  m_cr[94].B = HEX_E;
    m_cr[95].A = HEX_3;  m_cr[95].B = HEX_F;

    // Slice - 2
    // Row - 0
    m_cr[96].A = HEX_4;  m_cr[96].B = HEX_8;
    m_cr[97].A = HEX_4;  m_cr[97].B = HEX_9;
    m_cr[98].A = HEX_4;  m_cr[98].B = HEX_A;
    m_cr[99].A = HEX_4;  m_cr[99].B = HEX_B;
    // Row - 1
    m_cr[100].A = HEX_5;  m_cr[100].B = HEX_8;
    m_cr[101].A = HEX_5;  m_cr[101].B = HEX_9;
    m_cr[102].A = HEX_5;  m_cr[102].B = HEX_A;
    m_cr[103].A = HEX_5;  m_cr[103].B = HEX_B;
    // Row - 2
    m_cr[104].A = HEX_6;  m_cr[104].B = HEX_8;
    m_cr[105].A = HEX_6;  m_cr[105].B = HEX_9;
    m_cr[106].A = HEX_6;  m_cr[106].B = HEX_A;
    m_cr[107].A = HEX_6;  m_cr[107].B = HEX_B;
    // Row - 3
    m_cr[108].A = HEX_7;  m_cr[108].B = HEX_8;
    m_cr[109].A = HEX_7;  m_cr[109].B = HEX_9;
    m_cr[110].A = HEX_7;  m_cr[110].B = HEX_A;
    m_cr[111].A = HEX_7;  m_cr[111].B = HEX_B;

    // Slice - 3
    // Row - 0
    m_cr[112].A = HEX_4;  m_cr[112].B = HEX_C;
    m_cr[113].A = HEX_4;  m_cr[113].B = HEX_D;
    m_cr[114].A = HEX_4;  m_cr[114].B = HEX_E;
    m_cr[115].A = HEX_4;  m_cr[115].B = HEX_F;
    // Row - 1
    m_cr[116].A = HEX_5;  m_cr[116].B = HEX_C;
    m_cr[117].A = HEX_5;  m_cr[117].B = HEX_D;
    m_cr[118].A = HEX_5;  m_cr[118].B = HEX_E;
    m_cr[119].A = HEX_5;  m_cr[119].B = HEX_F;
    // Row - 2
    m_cr[120].A = HEX_6;  m_cr[120].B = HEX_C;
    m_cr[121].A = HEX_6;  m_cr[121].B = HEX_D;
    m_cr[122].A = HEX_6;  m_cr[122].B = HEX_E;
    m_cr[123].A = HEX_6;  m_cr[123].B = HEX_F;
    // Row - 3
    m_cr[124].A = HEX_7;  m_cr[124].B = HEX_C;
    m_cr[125].A = HEX_7;  m_cr[125].B = HEX_D;
    m_cr[126].A = HEX_7;  m_cr[126].B = HEX_E;
    m_cr[127].A = HEX_7;  m_cr[127].B = HEX_F;

    //////////////////////////////////
    // Lower Half Of Grid Structure //
    //////////////////////////////////

    // Box - 2
    // Slice - 0
    // Row - 0
    m_cr[128].A = HEX_8;  m_cr[128].B = HEX_0;  // col 0
    m_cr[129].A = HEX_8;  m_cr[129].B = HEX_1;  // col 1
    m_cr[130].A = HEX_8;  m_cr[130].B = HEX_2;  // col 2
    m_cr[131].A = HEX_8;  m_cr[131].B = HEX_3;  // col 3
    // Row - 1
    m_cr[132].A = HEX_9;  m_cr[132].B = HEX_0;
    m_cr[133].A = HEX_9;  m_cr[133].B = HEX_1;
    m_cr[134].A = HEX_9;  m_cr[134].B = HEX_2;
    m_cr[135].A = HEX_9;  m_cr[135].B = HEX_3;
    // Row - 2
    m_cr[136].A = HEX_A;  m_cr[136].B = HEX_0;
    m_cr[137].A = HEX_A;  m_cr[137].B = HEX_1;
    m_cr[138].A = HEX_A;  m_cr[138].B = HEX_2;
    m_cr[139].A = HEX_A;  m_cr[139].B = HEX_3;
    // Row - 3
    m_cr[140].A = HEX_B;  m_cr[140].B = HEX_0;
    m_cr[141].A = HEX_B;  m_cr[141].B = HEX_1;
    m_cr[142].A = HEX_B;  m_cr[142].B = HEX_2;
    m_cr[143].A = HEX_B;  m_cr[143].B = HEX_3;

    // Slice - 1
    // Row - 0
    m_cr[144].A = HEX_8;  m_cr[144].B = HEX_4;
    m_cr[145].A = HEX_8;  m_cr[145].B = HEX_5;
    m_cr[146].A = HEX_8;  m_cr[146].B = HEX_6;
    m_cr[147].A = HEX_8;  m_cr[147].B = HEX_7;
    // Row - 1
    m_cr[148].A = HEX_9;  m_cr[148].B = HEX_4;
    m_cr[149].A = HEX_9;  m_cr[149].B = HEX_5;
    m_cr[150].A = HEX_9;  m_cr[150].B = HEX_6;
    m_cr[151].A = HEX_9;  m_cr[151].B = HEX_7;
    // Row - 2;
    m_cr[152].A = HEX_A;  m_cr[152].B = HEX_4;
    m_cr[153].A = HEX_A;  m_cr[153].B = HEX_5;
    m_cr[154].A = HEX_A;  m_cr[154].B = HEX_6;
    m_cr[155].A = HEX_A;  m_cr[155].B = HEX_7;
    // Row - 3
    m_cr[156].A = HEX_B;  m_cr[156].B = HEX_4;
    m_cr[157].A = HEX_B;  m_cr[157].B = HEX_5;
    m_cr[158].A = HEX_B;  m_cr[158].B = HEX_6;
    m_cr[159].A = HEX_B;  m_cr[159].B = HEX_7;

    // Slice - 2
    // Row - 0
    m_cr[160].A = HEX_C;  m_cr[160].B = HEX_0;
    m_cr[161].A = HEX_C;  m_cr[161].B = HEX_1;
    m_cr[162].A = HEX_C;  m_cr[162].B = HEX_2;
    m_cr[163].A = HEX_C;  m_cr[163].B = HEX_3;
    // Row - 1;
    m_cr[164].A = HEX_D;  m_cr[164].B = HEX_0;
    m_cr[165].A = HEX_D;  m_cr[165].B = HEX_1;
    m_cr[166].A = HEX_D;  m_cr[166].B = HEX_2;
    m_cr[167].A = HEX_D;  m_cr[167].B = HEX_3;
    // Row - 2;
    m_cr[168].A = HEX_E;  m_cr[168].B = HEX_0;
    m_cr[169].A = HEX_E;  m_cr[169].B = HEX_1;
    m_cr[170].A = HEX_E;  m_cr[170].B = HEX_2;
    m_cr[171].A = HEX_E;  m_cr[171].B = HEX_3;
    // Row - 3
    m_cr[172].A = HEX_F;  m_cr[172].B = HEX_0;
    m_cr[173].A = HEX_F;  m_cr[173].B = HEX_1;
    m_cr[174].A = HEX_F;  m_cr[174].B = HEX_2;
    m_cr[175].A = HEX_F;  m_cr[175].B = HEX_3;

    // Slice - 3
    // Row - 0
    m_cr[176].A = HEX_C;  m_cr[176].B = HEX_4;
    m_cr[177].A = HEX_C;  m_cr[177].B = HEX_5;
    m_cr[178].A = HEX_C;  m_cr[178].B = HEX_6;
    m_cr[179].A = HEX_C;  m_cr[179].B = HEX_7;
    // Row - 1
    m_cr[180].A = HEX_D;  m_cr[180].B = HEX_4;
    m_cr[181].A = HEX_D;  m_cr[181].B = HEX_5;
    m_cr[182].A = HEX_D;  m_cr[182].B = HEX_6;
    m_cr[183].A = HEX_D;  m_cr[183].B = HEX_7;
    // Row - 2;
    m_cr[184].A = HEX_E;  m_cr[184].B = HEX_4;
    m_cr[185].A = HEX_E;  m_cr[185].B = HEX_5;
    m_cr[186].A = HEX_E;  m_cr[186].B = HEX_6;
    m_cr[187].A = HEX_E;  m_cr[187].B = HEX_7;
    // Row - 3
    m_cr[188].A = HEX_F;  m_cr[188].B = HEX_4;
    m_cr[189].A = HEX_F;  m_cr[189].B = HEX_5;
    m_cr[190].A = HEX_F;  m_cr[190].B = HEX_6;
    m_cr[191].A = HEX_F;  m_cr[191].B = HEX_7;

    // BOX - 3
    // Slice - 0
    // Row - 0
    m_cr[192].A = HEX_8;  m_cr[192].B = HEX_8;
    m_cr[193].A = HEX_8;  m_cr[193].B = HEX_9;
    m_cr[194].A = HEX_8;  m_cr[194].B = HEX_A;
    m_cr[195].A = HEX_8;  m_cr[195].B = HEX_B;
    // Row - 1
    m_cr[196].A = HEX_9;  m_cr[196].B = HEX_8;
    m_cr[197].A = HEX_9;  m_cr[197].B = HEX_9;
    m_cr[198].A = HEX_9;  m_cr[198].B = HEX_A;
    m_cr[199].A = HEX_9;  m_cr[199].B = HEX_B;
    // Row - 2
    m_cr[200].A = HEX_A;  m_cr[200].B = HEX_8;
    m_cr[201].A = HEX_A;  m_cr[201].B = HEX_9;
    m_cr[202].A = HEX_A;  m_cr[202].B = HEX_A;
    m_cr[203].A = HEX_A;  m_cr[203].B = HEX_B;
    // Row - 3
    m_cr[204].A = HEX_B;  m_cr[204].B = HEX_8;
    m_cr[205].A = HEX_B;  m_cr[205].B = HEX_9;
    m_cr[206].A = HEX_B;  m_cr[206].B = HEX_A;
    m_cr[207].A = HEX_B;  m_cr[207].B = HEX_B;

    // Slice - 1
    // Row - 0
    m_cr[208].A = HEX_8;  m_cr[208].B = HEX_C;
    m_cr[209].A = HEX_8;  m_cr[209].B = HEX_D;
    m_cr[210].A = HEX_8;  m_cr[210].B = HEX_E;
    m_cr[211].A = HEX_8;  m_cr[211].B = HEX_F;
    // Row - 1
    m_cr[212].A = HEX_9;  m_cr[212].B = HEX_C;
    m_cr[213].A = HEX_9;  m_cr[213].B = HEX_D;
    m_cr[214].A = HEX_9;  m_cr[214].B = HEX_E;
    m_cr[215].A = HEX_9;  m_cr[215].B = HEX_F;
    // Row - 2
    m_cr[216].A = HEX_A;  m_cr[216].B = HEX_C;
    m_cr[217].A = HEX_A;  m_cr[217].B = HEX_D;
    m_cr[218].A = HEX_A;  m_cr[218].B = HEX_E;
    m_cr[219].A = HEX_A;  m_cr[219].B = HEX_F;
    // Row - 3
    m_cr[220].A = HEX_B;  m_cr[220].B = HEX_C;
    m_cr[221].A = HEX_B;  m_cr[221].B = HEX_D;
    m_cr[222].A = HEX_B;  m_cr[222].B = HEX_E;
    m_cr[223].A = HEX_B;  m_cr[223].B = HEX_F;

    // Slice - 2
    // Row - 0
    m_cr[224].A = HEX_C;  m_cr[224].B = HEX_8;
    m_cr[225].A = HEX_C;  m_cr[225].B = HEX_9;
    m_cr[226].A = HEX_C;  m_cr[226].B = HEX_A;
    m_cr[227].A = HEX_C;  m_cr[227].B = HEX_B;
    // Row - 1
    m_cr[228].A = HEX_D;  m_cr[228].B = HEX_8;
    m_cr[229].A = HEX_D;  m_cr[229].B = HEX_9;
    m_cr[230].A = HEX_D;  m_cr[230].B = HEX_A;
    m_cr[231].A = HEX_D;  m_cr[231].B = HEX_B;
    // Row - 2
    m_cr[232].A = HEX_E;  m_cr[232].B = HEX_8;
    m_cr[233].A = HEX_E;  m_cr[233].B = HEX_9;
    m_cr[234].A = HEX_E;  m_cr[234].B = HEX_A;
    m_cr[235].A = HEX_E;  m_cr[235].B = HEX_B;
    // Row - 3
    m_cr[236].A = HEX_F;  m_cr[236].B = HEX_8;
    m_cr[237].A = HEX_F;  m_cr[237].B = HEX_9;
    m_cr[238].A = HEX_F;  m_cr[238].B = HEX_A;
    m_cr[239].A = HEX_F;  m_cr[239].B = HEX_B;

    // Slice - 3
    // Row - 0
    m_cr[240].A = HEX_C;  m_cr[240].B = HEX_C;
    m_cr[241].A = HEX_C;  m_cr[241].B = HEX_D;
    m_cr[242].A = HEX_C;  m_cr[242].B = HEX_E;
    m_cr[243].A = HEX_C;  m_cr[243].B = HEX_F;
    // Row - 1
    m_cr[244].A = HEX_D;  m_cr[244].B = HEX_C;
    m_cr[245].A = HEX_D;  m_cr[245].B = HEX_D;
    m_cr[246].A = HEX_D;  m_cr[246].B = HEX_E;
    m_cr[247].A = HEX_D;  m_cr[247].B = HEX_F;
    // Row - 2
    m_cr[248].A = HEX_E;  m_cr[248].B = HEX_C;
    m_cr[249].A = HEX_E;  m_cr[249].B = HEX_D;
    m_cr[250].A = HEX_E;  m_cr[250].B = HEX_E;
    m_cr[251].A = HEX_E;  m_cr[251].B = HEX_F;
    // Row - 3
    m_cr[252].A = HEX_F;  m_cr[252].B = HEX_C;
    m_cr[253].A = HEX_F;  m_cr[253].B = HEX_D;
    m_cr[254].A = HEX_F;  m_cr[254].B = HEX_E;
    m_cr[255].A = HEX_F;  m_cr[255].B = HEX_F;

} // initializeCrossReference

As you can see this function is long, and not very readable. I'm trying to figure out a way to implement this function in an elegant manner and this is where I am stuck. How would I generate this pattern within in few lines of code using for loop/s and a few if statements(if needed)?

Eventually I would like to compress these [A,B] coordinates into a single unsigned char as if [A,B] = [0x0C,0x08] it would be stored as 0xC8 as a byte instead of a pair of enumerations.

EDIT - Adding a new Image that should help to understand how I am generating my coordinate pairs and the exact order that they must be in within my look up array.

Note: This question is the post that I'm accepting, and as for the old question here Custom Data Structure: Implementing an algorithim to generate a lookup table [duplicate] is now a dead post, please refer to this one as being the correct one. I was having trouble with my browser last night when I tried to continue to edit the old one. I was planning on deleting it but I will leave it there for historical purposes and let the administration determine whether or not to delete it.


回答1:


For example, like this:

for (int i = 0; i < 256; ++i) {
    int cube = i / 64;
    int slice = (i % 64) / 16;
    int row = (i % 16) / 4;
    int col = i % 4;
    m_cr[i].A = cube / 2 * 8 + slice / 2 * 4 + row;
    m_cr[i].B = cube % 2 * 8 + slice % 2 * 4 + col;
}



回答2:


Having stared at the lookup table, for a few minutes (and only at the raw data in the lookup table, I couldn't follow the graphics), I believe that the following example will generate your lookup table.

As I told you in your first question, most of the question is irrelevant. If you got rid of the first 3/4th of your question, someone would've probably came up with an answer soon. Sometimes it does help to know a little bit of what the data means, but here it seems to be more of a distraction, than anything else.

Anyway, the first thing to do is to get rid of the enum. It doesn't add any value, and just gets in the way. Just use natural hexadecimal numbers, that's all. Having said that, it should be trivial for you to adapt this with your own code:

#include <iostream>

int main()
{
    for (int n=0; n<256; ++n)
    {
        int a = ((((n >> 5) & 1) << 2) | (n & 0x80) >> 4) | ((n >> 2) & 3);
        int b = (n & 3) | (((n >> 4) & 1) << 2) |
            (((n >> 6) & 1) << 3);

        std::cout << n << ": a=" << a << " b=" << b << std::endl;
    }
}

I have a nagging feeling that this can be simplified a little bit even more, perhaps someone else can contribute an improvement, but, in any case, the output from this seems to match the raw hexadecimal values, for both A and B, in your lookup table.




回答3:


Start by changing HEX_ to an array. Then, look at individual blocks and turn them into loops. Since your .A and .B are mutually exclusive, we may handle them separately.

Here's a "function" you may use to help initialize A:

void InitializeA(CrossReference arr[])
{
    InitializeABlock(arr, 0x00, 0x00);
    InitializeABlock(arr, 0x10, 0x00);
    InitializeABlock(arr, 0x20, 0x04);
    InitializeABlock(arr, 0x30, 0x04);
    InitializeABlock(arr, 0x40, 0x00);
    InitializeABlock(arr, 0x50, 0x00);
    InitializeABlock(arr, 0x60, 0x04);
    InitializeABlock(arr, 0x70, 0x04);

    InitializeABlock(arr, 0x80, 0x08);
    InitializeABlock(arr, 0x90, 0x08);
    InitializeABlock(arr, 0xA0, 0x10);
    InitializeABlock(arr, 0xB0, 0x10);
    InitializeABlock(arr, 0xC0, 0x08);
    InitializeABlock(arr, 0xD0, 0x08);
    InitializeABlock(arr, 0xE0, 0x10);
    InitializeABlock(arr, 0xF0, 0x10);
}

void InitializeABlock(CrossReference arr[], int idxStart, int hexStart)
{
    for(int j = hexStart; j < hexStart + 4; j++)
    {
        int baseIdx = idxStart + 4 * (j - hexStart);

        for(int i = 0; i < 4; i++)
        {
            arr[baseIdx + i].A = j;
        }
    }
}

The implementation for B is very similar:

void InitializeB(CrossReference arr[])
{
    InitializeBBlock(arr, 0x00, 0x00);
    InitializeBBlock(arr, 0x10, 0x00);
    InitializeBBlock(arr, 0x20, 0x04);
    InitializeBBlock(arr, 0x30, 0x04);
    InitializeBBlock(arr, 0x40, 0x00);
    InitializeBBlock(arr, 0x50, 0x00);
    InitializeBBlock(arr, 0x60, 0x04);
    InitializeBBlock(arr, 0x70, 0x04);

    InitializeBBlock(arr, 0x80, 0x08);
    InitializeBBlock(arr, 0x90, 0x08);
    InitializeBBlock(arr, 0xA0, 0x10);
    InitializeBBlock(arr, 0xB0, 0x10);
    InitializeBBlock(arr, 0xC0, 0x08);
    InitializeBBlock(arr, 0xD0, 0x08);
    InitializeBBlock(arr, 0xE0, 0x10);
    InitializeBBlock(arr, 0xF0, 0x10);
}

void InitializeBBlock(CrossReference arr[], int idxStart, int hexStart)
{
    for(int j = idxStart; j < idxStart + 4; j++)
    {
        int baseIdx = idxStart + 4 * (j - idxStart);

        for(int i = 0; i < 4; i++)
        {
            arr[baseIdx + i].A = i + hexStart;
        }
    }
}

You may, of course, compress this further. ;)



来源:https://stackoverflow.com/questions/36416290/implementing-a-lookup-table

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!