J.U.C剖析与解读2(AQS的由来)
前言
前面已经通过实现自定义ReentrantLock与自定义ReentrantReadWriteLock,展示了JDK是如何实现独占锁与共享锁的。
那么实际JDK源码中的ReentrantLock与ReentrantReadWritreLock是如何实现的呢?我们现有的自定义代码是否可以更进一步呢?
答案是肯定的。注意看我之前两个Lock的朋友,应该注意到了。自定义ReentrantReadWriteLock的独占锁部分,其实和自定义ReentrantLock是几乎一样的。
也就是说,不同Lock其实现是差不多的。那么是否可以提取公共的部分,是否可以写得更加优雅一些。
那么这篇博客,就是通过提取公共代码,引入模板方法设计模式,并利用Java的一些特性,写出一个自定义的AQS。
当然,最后也会剖析源码中AQS实现与我们自定义AQS的差别所在,并解读源码AQS中一些高级应用,如AQS通过一个state实现读写锁的持有数量(居然通过一个int值的CAS操作,解决了自定义读写锁持有数量的独占操作)。
如果看过源码的朋友,会发现源码中的ReentrantLock会自定义一个Sync,该Sync会继承一个AbstratQueueSynchronizer(简称AQS)。然后源码中的ReentrantLock的tryLock等方法,则是调用Sync的对应子类(FairSync或NonFairSync,也就是是否为公平锁)来实现对应功能。并且,只有tryAcquire与lock两个方法是由ReentrantLock实现的,其它方法是由AQS提供的。lock是由FairSync与NonFairSync分别实现的。而tryAcquire是由FairSync与NonFairSync父类的Sync实现,NonFairSync的tryLock直接调用父类Sync的nonfairTryAcquire方法。
而ReentrantReadWriteLock则是增加了ReadLock与WriteLock,其实现,则是调用Sync的不同方法而已。
有的小伙伴,会觉得这样的关系很复杂,明明一个锁就比较复杂了,还搞得这么抽象。提取一个AQS就够抽象的了,每个锁还整了一个Sync,FairSync,NonFairSync内部类,视情况,还要弄个ReadLock,WriteLock这些内部类。这样做的目的其实是为了封装代码,提高代码复用性。当然,实际源码看多了,反而会觉得这样的代码,看得挺舒服的。比较符合设计理念(想想,你接收的项目中,一个类上千行代码,完全不敢修改)。
关于读源码,简单说一下我的感受。最核心的就是坚持,最重要的是全局观,最需要的是积累。
我陆陆续续阅读源码(不只是Java),也有差不多两年的经验吧。从最早的Windows内核源码,到后面的前端框架源码,到今年的Java源码阅读。最早的Windows内核源码,那真的是无知者无畏啊,简直是一段极其痛苦的经历。那时候一天可能就二十页样子,还得看运气。但是那段时间给我带来了很多,包括什么系统内存管理,内存的用户态与内核态,以及系统上下文等积累,为我后面的提升带来了很多。而后面的前端源码的阅读,也让我开始接触源码的一些思路。最后到今年的Java源码,有了去年golang一些外文博客的翻译(涉及语言设计部分)铺垫,才渐渐有了一些阅读源码的感觉(自我感觉有点上路了)。所以,最核心的是坚持。
至于全局观嘛,就是一方面很多时候源码太多,常常迷路,我们需要把握主线,以及自己的目的。如果可以有一个XMIND,或者比较不错的博客等作为指引就更好了。比如这次AQS拆分,我就是从网易云的大佬James学到的。虽然之前就有了JUC学习的积累,但是大佬的AQS拆分,确实令我对AQS有了更为深入的理解。另一方面就是需要把握自己应该研究的深度(在自己能力层级再深入一些即可),而不是抓着源码的每个字不放。我今年年初的时候,就想研究IOC源码,根据一位大佬的文章,连续啃了两三个星期。但后面陆陆续续就忘了。虽然这段经历对我依旧有着一定的积累价值(对我最近研究SpringApplication的run过程有着不错的价值),但是超出自己能力太多地撸源码,性价比就太低了。
最后就是积累,我非常看重积累。自从高三后,我就对积累这个词有了更深入的理解。很多时候,我们阅读一些书籍,研究一些原理,虽然后来感觉忘记了,但是积累还是在的。就像我学习编程时,就经常感受到大学时期的计算机网络,计算机原理,分布式课题等经历给我带来的积累。而现在很多人都过于看重即时价值(就是我立马学了,立马就要有效果),而我相信技术的攀登,是离不开经年累月的积累的。
如果大家对阅读源码,感兴趣的话,可以告诉我。可以考虑写一篇文章,来简单谈谈源码阅读这件事儿。
一,简易JUC(版本一):
这里就是将之前实现的简易版ReentrantLock与ReentrantReadWriteLock展现出来,就当是简单回顾一下。
1.JarryReentrantLock:
package tech.jarry.learning.netease.locks2; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.LockSupport; /** * @Description: 仿ReentrantLock,实现其基本功能及特性 * @Author: jarry */ public class JarryReentrantLock { private AtomicInteger count = new AtomicInteger(0); private AtomicReference<Thread> owner = new AtomicReference<>(); private LinkedBlockingQueue<Thread> waiters = new LinkedBlockingQueue<>(); public void lock() { int arg = 1; if (!tryLock(arg)){ waiters.offer(Thread.currentThread()); while (true){ Thread head = waiters.peek(); if (head == Thread.currentThread()){ if (!tryLock(arg)){ LockSupport.park(); } else { waiters.poll(); return; } } else { LockSupport.park(); } } } } public void unlock() { int arg = 1; if (tryUnlock(arg)){ Thread head = waiters.peek(); if (head != null){ LockSupport.unpark(head); } } } public boolean tryLock(int acquires) { int countValue = count.get(); if (countValue != 0){ if (Thread.currentThread() == owner.get()){ count.set(countValue+acquires); return true; }else{ return false; } }else { if (count.compareAndSet(countValue,countValue+acquires)){ owner.set(Thread.currentThread()); return true; } else { return false; } } } private boolean tryUnlock(int releases) { if (Thread.currentThread() != owner.get()){ throw new IllegalMonitorStateException(); } else { int countValue = count.get(); int countNextValue = countValue - releases; count.compareAndSet(countValue,countNextValue); if (countNextValue == 0){ owner.compareAndSet(Thread.currentThread(),null); return true; } else { return false; } } } public void lockInterruptibly() throws InterruptedException { } public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } public Condition newCondition() { return null; } }
2.JarryReadWriteLock:
package tech.jarry.learning.netease.locks2; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.LockSupport; /** * @Description: * @Author: jarry */ public class JarryReadWriteLock { volatile AtomicInteger readCount = new AtomicInteger(0); AtomicInteger writeCount = new AtomicInteger(0); AtomicReference<Thread> owner = new AtomicReference<>(); public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>(); class WaitNode{ Thread thread = null; // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁) int type = 0; int arg = 0; public WaitNode(Thread thread, int type, int arg) { this.type = type; this.thread = thread; this.arg = arg; } } /** * 获取独占锁(针对独占锁) */ public void lock(){ int arg = 1; if (!tryLock(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg); waiters.offer(waitNode); while (true){ WaitNode headNote = waiters.peek(); if (headNote !=null && headNote.thread == Thread.currentThread()){ if (!tryLock(headNote.arg)){ LockSupport.park(); } else { waiters.poll(); return; } }else { LockSupport.park(); } } } } /** * 解锁(针对独占锁) */ public void unlock(){ int arg = 1; if (tryUnlock(arg)){ WaitNode head = waiters.peek(); if (head == null){ return; } LockSupport.unpark(head.thread); } } /** * 尝试获取独占锁(针对独占锁) * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?) * @return */ public boolean tryLock(int acquires){ if (readCount.get() == 0){ int writeCountValue = writeCount.get(); if (writeCountValue == 0){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } } else { if (Thread.currentThread() == owner.get()){ writeCount.set(writeCountValue+acquires); return true; } } } return false; } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ if (owner.get() != Thread.currentThread()){ throw new IllegalMonitorStateException(); } int writeCountValue = writeCount.get(); writeCount.set(writeCountValue-releases); if (writeCount.get() == 0){ owner.compareAndSet(Thread.currentThread(),null); return true; } else { return false; } } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ int arg = 1; if (!tryLockShared(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg); waiters.offer(waitNode); while (true){ WaitNode head = waiters.peek(); if (head != null && head.thread == Thread.currentThread()){ if (tryLockShared(head.arg)){ waiters.poll(); WaitNode newHead = waiters.peek(); if (newHead != null && newHead.type == 1){ LockSupport.unpark(newHead.thread); } return; } else { LockSupport.park(); } } else { LockSupport.park(); } } } } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ int arg = 1; if (tryUnLockShared(arg)){ WaitNode head = waiters.peek(); if (head != null){ LockSupport.unpark(head.thread); } return true; } return false; } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ while (true){ if (writeCount.get() == 0 || owner.get() == Thread.currentThread()){ int readCountValue = readCount.get(); if (readCount.compareAndSet(readCountValue, readCountValue+acquires)){ return true; } } return false; } } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ while (true){ int readCountValue = readCount.get(); int readCountNext = readCountValue - releases; if (readCount.compareAndSet(readCountValue,readCountNext)){ return readCountNext == 0; } } } }
二,简易JUC(版本二):
很明显,上面的代码中,JarryReentrantLock的tryLock等方法与JarryReadWriteLock中共享锁的tryLock等方法是类似的(本来就是从JarryReentrantLock复制过来的嘛)。那么,这里就需要引入模板方法(详见笔记《设计模式》-模板方法)。通过一个commonMask类,来提取公共方法。
1.CommonMask:
package tech.jarry.learning.netease.locks3; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.LockSupport; /** * @Description: * @Author: jarry */ public class CommonMask { volatile AtomicInteger readCount = new AtomicInteger(0); AtomicInteger writeCount = new AtomicInteger(0); AtomicReference<Thread> owner = new AtomicReference<>(); public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>(); class WaitNode{ Thread thread = null; // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁) int type = 0; int arg = 0; public WaitNode(Thread thread, int type, int arg) { this.type = type; this.thread = thread; this.arg = arg; } } /** * 获取独占锁(针对独占锁) */ public void lock(){ int arg = 1; if (!tryLock(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg); waiters.offer(waitNode); while (true){ WaitNode headNote = waiters.peek(); if (headNote !=null && headNote.thread == Thread.currentThread()){ if (!tryLock(headNote.arg)){ LockSupport.park(); } else { waiters.poll(); return; } }else { LockSupport.park(); } } } } /** * 解锁(针对独占锁) */ public void unlock(){ int arg = 1; if (tryUnlock(arg)){ WaitNode head = waiters.peek(); if (head == null){ return; } LockSupport.unpark(head.thread); } } /** * 尝试获取独占锁(针对独占锁) * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?) * @return */ public boolean tryLock(int acquires){ if (readCount.get() == 0){ int writeCountValue = writeCount.get(); if (writeCountValue == 0){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } } else { if (Thread.currentThread() == owner.get()){ writeCount.set(writeCountValue+acquires); return true; } } } return false; } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ if (owner.get() != Thread.currentThread()){ throw new IllegalMonitorStateException(); } int writeCountValue = writeCount.get(); writeCount.set(writeCountValue-releases); if (writeCount.get() == 0){ owner.compareAndSet(Thread.currentThread(),null); return true; } else { return false; } } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ int arg = 1; if (!tryLockShared(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg); waiters.offer(waitNode); while (true){ WaitNode head = waiters.peek(); if (head != null && head.thread == Thread.currentThread()){ if (tryLockShared(head.arg)){ waiters.poll(); WaitNode newHead = waiters.peek(); if (newHead != null && newHead.type == 1){ LockSupport.unpark(newHead.thread); } return; } else { LockSupport.park(); } } else { LockSupport.park(); } } } } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ int arg = 1; if (tryUnLockShared(arg)){ WaitNode head = waiters.peek(); if (head != null){ LockSupport.unpark(head.thread); } return true; } return false; } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ while (true){ if (writeCount.get() == 0 || owner.get() == Thread.currentThread()){ int readCountValue = readCount.get(); if (readCount.compareAndSet(readCountValue, readCountValue+acquires)){ return true; } } return false; } } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ while (true){ int readCountValue = readCount.get(); int readCountNext = readCountValue - releases; if (readCount.compareAndSet(readCountValue,readCountNext)){ return readCountNext == 0; } } } }
2.JarryReentrantLock:
package tech.jarry.learning.netease.locks3; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.LockSupport; /** * @Description: 仿ReentrantLock,实现其基本功能及特性 * @Author: jarry */ public class JarryReentrantLock { private CommonMask commonMask = new CommonMask(); public void lock() { commonMask.lock(); } public void unlock() { commonMask.unlock(); } public boolean tryLock(int acquire) { return commonMask.tryLock(acquire); } private boolean tryUnlock(int release) { return commonMask.tryUnlock(release); } }
3.JarryReadWriteLock:
package tech.jarry.learning.netease.locks3; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.LockSupport; /** * @Description: * @Author: jarry */ public class JarryReadWriteLock { private CommonMask commonMask = new CommonMask(); /** * 获取独占锁(针对独占锁) */ public void lock(){ commonMask.lock(); } /** * 解锁(针对独占锁) */ public void unlock(){ commonMask.unlock(); } /** * 尝试获取独占锁(针对独占锁) * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?) * @return */ public boolean tryLock(int acquires){ return commonMask.tryLock(acquires); } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ return commonMask.tryUnlock(releases); } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ commonMask.lockShared(); } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ return commonMask.unLockShared(); } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ return tryLockShared(acquires); } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ return commonMask.tryUnLockShared(releases); } }
到了这里,大家就可以明显看出,总体代码量的下降(这还只是两个Lock)。但是问题也出来了,那就是这样将所有方法都放在父类CommonMask,子类进行调用,是不是显得过于死板(说得直接点,就是这种操作,完全就是将代码往父类一抛而已)。这说明,之前代码公共提取做得并不好。
重新整理思路,JarryReentrantLock与JarryReadWriteLock的共同之处到底在哪里。细想一下,发现这两个方法的lock,unlock等操作是一致的,只是实际的运行逻辑方法tryLock,tryUnlock,tryLockShared,tryUnLockShared四个方法(在框架源码中,常常用doxxx方法,表示实际运行逻辑的方法)。所以CommonMask应该实现的是这四个方法之外的方法,而这四个方法交由子类,来根据具体需要来实现(CommonMask中,这四个方法直接抛出对应异常)。
最后,ReentrantLock是有公平锁,非公平锁之分的。而通过上面的调整,现在的JarryReentrantLock可以实现自己对应方法,来展现特性(公平锁/非公平锁的选择)了。
三,简易JUC(版本三):
1.CommonMask:
package tech.jarry.learning.netease.locks4; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.LockSupport; /** * @Description: * @Author: jarry */ public class CommonMask { volatile AtomicInteger readCount = new AtomicInteger(0); AtomicInteger writeCount = new AtomicInteger(0); AtomicReference<Thread> owner = new AtomicReference<>(); public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>(); class WaitNode{ Thread thread = null; // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁) int type = 0; int arg = 0; public WaitNode(Thread thread, int type, int arg) { this.type = type; this.thread = thread; this.arg = arg; } } /** * 获取独占锁(针对独占锁) */ public void lock(){ int arg = 1; if (!tryLock(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg); waiters.offer(waitNode); while (true){ WaitNode headNote = waiters.peek(); if (headNote !=null && headNote.thread == Thread.currentThread()){ if (!tryLock(headNote.arg)){ LockSupport.park(); } else { waiters.poll(); return; } }else { LockSupport.park(); } } } } /** * 解锁(针对独占锁) */ public void unlock(){ int arg = 1; if (tryUnlock(arg)){ WaitNode head = waiters.peek(); if (head == null){ return; } LockSupport.unpark(head.thread); } } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ int arg = 1; if (!tryLockShared(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg); waiters.offer(waitNode); while (true){ WaitNode head = waiters.peek(); if (head != null && head.thread == Thread.currentThread()){ if (tryLockShared(head.arg)){ waiters.poll(); WaitNode newHead = waiters.peek(); if (newHead != null && newHead.type == 1){ LockSupport.unpark(newHead.thread); } return; } else { LockSupport.park(); } } else { LockSupport.park(); } } } } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ int arg = 1; if (tryUnLockShared(arg)){ WaitNode head = waiters.peek(); if (head != null){ LockSupport.unpark(head.thread); } return true; } return false; } /** * 尝试获取独占锁(针对独占锁) * @param acquires * @return */ public boolean tryLock(int acquires){ throw new UnsupportedOperationException(); } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ throw new UnsupportedOperationException(); } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ throw new UnsupportedOperationException(); } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ throw new UnsupportedOperationException(); } }
2.JarryReentrantLock:
package tech.jarry.learning.netease.locks4; /** * @Description: 仿ReentrantLock,实现其基本功能及特性 * @Author: jarry */ public class JarryReentrantLock { private boolean isFair; // 默认采用非公平锁,保证效率(就是参照源码) public JarryReentrantLock() { this.isFair = false; } public JarryReentrantLock(boolean isFair) { this.isFair = isFair; } private CommonMask commonMask = new CommonMask(){ @Override public boolean tryLock(int acquires){ if (isFair){ return tryFairLock(acquires); } else { return tryNonFairLock(acquires); } } private boolean tryFairLock(int acquires){ // 这里简单注释一下,如何实现公平锁,其关键在于新的线程到来时,不再直接尝试获取锁,而是直接塞入队列(队列为空,也是殊途同归的) // 1.判断读锁(共享锁)是否被占用 if (readCount.get() == 0){ // 2.判断写锁(独占锁)是否被占用 int writeCountValue = writeCount.get(); if (writeCountValue == 0){ // 2.1 (核心区别)如果写锁未被占用,需要先对等待队列waiters进行判断 WaitNode head = waiters.peek(); if (head !=null && head.thread == Thread.currentThread()){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } // 竞争失败就直接返回false了 } } else { // 2.2 如果写锁已经被占用了,就判断是否为当前线程持有,是否进行重入操作 if (owner.get() == Thread.currentThread()){ // 如果持有独占锁的线程就是当前线程,那么不需要改变owner,也不需要CAS,只需要修改writeCount的值即可 writeCount.set(writeCountValue + acquires); return true; } } } // 以上操作失败,就返回false,表示竞争锁失败 return false; } private boolean tryNonFairLock(int acquires){ if (readCount.get() == 0){ int writeCountValue = writeCount.get(); if (writeCountValue == 0){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } } else { if (Thread.currentThread() == owner.get()){ writeCount.set(writeCountValue+acquires); return true; } } } return false; } @Override public boolean tryUnlock(int releases) { if (owner.get() != Thread.currentThread()){ throw new IllegalMonitorStateException(); } int writeCountValue = writeCount.get(); writeCount.set(writeCountValue-releases); if (writeCount.get() == 0){ owner.compareAndSet(Thread.currentThread(),null); return true; } else { return false; } } // 其它诸如共享锁的相关操作,就不进行了。如果强行调用,只会发生UnsupportedOperationException }; public void lock() { commonMask.lock(); } public void unlock() { commonMask.unlock(); } public boolean tryLock(int acquire) { return commonMask.tryLock(acquire); } private boolean tryUnlock(int release) { return commonMask.tryUnlock(release); } }
3.JarryReadWriteLock:
package tech.jarry.learning.netease.locks4; /** * @Description: * @Author: jarry */ public class JarryReadWriteLock { private CommonMask commonMask = new CommonMask(){ @Override public boolean tryLock(int acquires){ if (readCount.get() == 0){ int writeCountValue = writeCount.get(); if (writeCountValue == 0){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } } else { if (Thread.currentThread() == owner.get()){ writeCount.set(writeCountValue+acquires); return true; } } } return false; } @Override public boolean tryUnlock(int releases) { if (owner.get() != Thread.currentThread()){ throw new IllegalMonitorStateException(); } int writeCountValue = writeCount.get(); writeCount.set(writeCountValue-releases); if (writeCount.get() == 0){ owner.compareAndSet(Thread.currentThread(),null); return true; } else { return false; } } @Override public boolean tryLockShared(int acquires) { while (true){ if (writeCount.get() == 0 || owner.get() == Thread.currentThread()){ int readCountValue = readCount.get(); if (readCount.compareAndSet(readCountValue, readCountValue+acquires)){ return true; } } return false; } } @Override public boolean tryUnLockShared(int releases) { while (true){ int readCountValue = readCount.get(); int readCountNext = readCountValue - releases; if (readCount.compareAndSet(readCountValue,readCountNext)){ return readCountNext == 0; } } } }; /** * 获取独占锁(针对独占锁) */ public void lock(){ commonMask.lock(); } /** * 解锁(针对独占锁) */ public void unlock(){ commonMask.unlock(); } /** * 尝试获取独占锁(针对独占锁) * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?) * @return */ public boolean tryLock(int acquires){ return commonMask.tryLock(acquires); } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ return commonMask.tryUnlock(releases); } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ commonMask.lockShared(); } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ return commonMask.unLockShared(); } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ return tryLockShared(acquires); } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ return commonMask.tryUnLockShared(releases); } }
这样看来,顺眼不少。但是,还是存在两点问题。一方面,两个Lock并没有如实际源码那样,实现Lock接口与ReadWriteLock接口。另一方面,JarryReadWriteLock并没有如实际源码那样,通过获取对应Lock(如ReadLock与WriteLock),再进行对应锁操作(其实,就是实现ReadWriteLock接口)。
那么就来进行改造吧。这里直接采用James大佬的最终版CommonMask-JameAQS了。 这里采用自己的AQS,因为自己的AQS有一些关键注解。
四,简易JUC(版本四):
1.JarryAQS:
package tech.jarry.learning.netease.locks6; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.LockSupport; /** * @Description: * @Author: jarry */ public class JarryAQS { volatile AtomicInteger readCount = new AtomicInteger(0); AtomicInteger writeCount = new AtomicInteger(0); AtomicReference<Thread> owner = new AtomicReference<>(); public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>(); class WaitNode{ Thread thread = null; // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁) int type = 0; int arg = 0; public WaitNode(Thread thread, int type, int arg) { this.type = type; this.thread = thread; this.arg = arg; } } /** * 获取独占锁(针对独占锁) */ public void lock(){ int arg = 1; if (!tryLock(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg); waiters.offer(waitNode); while (true){ WaitNode headNote = waiters.peek(); if (headNote !=null && headNote.thread == Thread.currentThread()){ if (!tryLock(headNote.arg)){ LockSupport.park(); } else { waiters.poll(); return; } }else { LockSupport.park(); } } } } /** * 解锁(针对独占锁) */ public void unlock(){ int arg = 1; if (tryUnlock(arg)){ WaitNode head = waiters.peek(); if (head == null){ return; } LockSupport.unpark(head.thread); } } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ int arg = 1; if (!tryLockShared(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg); waiters.offer(waitNode); while (true){ WaitNode head = waiters.peek(); if (head != null && head.thread == Thread.currentThread()){ if (tryLockShared(head.arg)){ waiters.poll(); WaitNode newHead = waiters.peek(); if (newHead != null && newHead.type == 1){ LockSupport.unpark(newHead.thread); } return; } else { LockSupport.park(); } } else { LockSupport.park(); } } } } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ int arg = 1; if (tryUnLockShared(arg)){ WaitNode head = waiters.peek(); if (head != null){ LockSupport.unpark(head.thread); } return true; } return false; } /** * 尝试获取独占锁(针对独占锁) * @param acquires * @return */ public boolean tryLock(int acquires){ throw new UnsupportedOperationException(); } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ throw new UnsupportedOperationException(); } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ throw new UnsupportedOperationException(); } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ throw new UnsupportedOperationException(); } }
2.JarryReentrantLock:
package tech.jarry.learning.netease.locks6; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; /** * @Description: 仿ReentrantLock,实现其基本功能及特性 * @Author: jarry */ public class JarryReentrantLock implements Lock { private boolean isFair; // 默认采用非公平锁,保证效率(就是参照源码) public JarryReentrantLock() { this.isFair = false; } public JarryReentrantLock(boolean isFair) { this.isFair = isFair; } private JarryAQS jarryAQS = new JarryAQS(){ @Override // 源码中,则是将FairSync与NonFairSync作为两个单独内布类(extend Sync),来实现的。那样会更加优雅,耦合度更低,扩展性更好(而且实际源码,需要重写的部分也会更多,而不像这个自定义demo,只有一个tryLock方法需要重写) public boolean tryLock(int acquires){ if (isFair){ return tryFairLock(acquires); } else { return tryNonFairLock(acquires); } } private boolean tryFairLock(int acquires){ // 这里简单注释一下,如何实现公平锁,其关键在于新的线程到来时,不再直接尝试获取锁,而是直接塞入队列(队列为空,也是殊途同归的) // 1.判断读锁(共享锁)是否被占用 if (readCount.get() == 0){ // 2.判断写锁(独占锁)是否被占用 int writeCountValue = writeCount.get(); if (writeCountValue == 0){ // 2.1 (核心区别)如果写锁未被占用,需要先对等待队列waiters进行判断 WaitNode head = waiters.peek(); if (head !=null && head.thread == Thread.currentThread()){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } // 竞争失败就直接返回false了 } } else { // 2.2 如果写锁已经被占用了,就判断是否为当前线程持有,是否进行重入操作 if (owner.get() == Thread.currentThread()){ // 如果持有独占锁的线程就是当前线程,那么不需要改变owner,也不需要CAS,只需要修改writeCount的值即可 writeCount.set(writeCountValue + acquires); return true; } } } // 以上操作失败,就返回false,表示竞争锁失败 return false; } private boolean tryNonFairLock(int acquires){ if (readCount.get() == 0){ int writeCountValue = writeCount.get(); if (writeCountValue == 0){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } } else { if (Thread.currentThread() == owner.get()){ writeCount.set(writeCountValue+acquires); return true; } } } return false; } @Override /** * 先通过临时变量c,判断是否接下来的操作会完全解锁。 如果完全解锁,先释放owner,再通过setState将count(源码中为state)修改为0。 这样调换了一下顺序,但是避免了owner的原子性问题(毕竟别的线程是通过state来判断是否可以竞争锁,修改owner的)。 */ public boolean tryUnlock(int releases) { if (owner.get() != Thread.currentThread()){ throw new IllegalMonitorStateException(); } int writeCountNextValue = writeCount.get() - releases; boolean result = false; if (writeCountNextValue == 0){ result = true; owner.set(null); } writeCount.set(writeCountNextValue); return result; } // 其它诸如共享锁的相关操作,就不进行了。如果强行调用,只会发生UnsupportedOperationException }; @Override public void lock() { jarryAQS.lock(); } @Override public void lockInterruptibly() throws InterruptedException { } @Override public boolean tryLock() { return jarryAQS.tryLock(1); } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } @Override public void unlock() { jarryAQS.unlock(); } @Override public Condition newCondition() { return null; } }
3.JarryReadWriteLock:
package tech.jarry.learning.netease.locks6; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReadWriteLock; /** * @Description: * @Author: jarry */ public class JarryReadWriteLock implements ReadWriteLock { private JarryAQS jarryAQS = new JarryAQS(){ @Override // 实际源码,是通过Sync类,继承AQS,再进行Override的。 public boolean tryLock(int acquires){ if (readCount.get() == 0){ int writeCountValue = writeCount.get(); if (writeCountValue == 0){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } } else { if (Thread.currentThread() == owner.get()){ writeCount.set(writeCountValue+acquires); return true; } } } return false; } @Override public boolean tryUnlock(int releases) { if (owner.get() != Thread.currentThread()){ throw new IllegalMonitorStateException(); } int writeCountNextValue = writeCount.get() - releases; boolean result = false; if (writeCountNextValue == 0){ result = true; owner.set(null); } writeCount.set(writeCountNextValue); return result; } @Override public boolean tryLockShared(int acquires) { while (true){ if (writeCount.get() == 0 || owner.get() == Thread.currentThread()){ int readCountValue = readCount.get(); if (readCount.compareAndSet(readCountValue, readCountValue+acquires)){ return true; } } return false; } } @Override public boolean tryUnLockShared(int releases) { while (true){ int readCountValue = readCount.get(); int readCountNext = readCountValue - releases; if (readCount.compareAndSet(readCountValue,readCountNext)){ return readCountNext == 0; } } } }; /** * 获取独占锁(针对独占锁) */ public void lock(){ jarryAQS.lock(); } /** * 解锁(针对独占锁) */ public void unlock(){ jarryAQS.unlock(); } /** * 尝试获取独占锁(针对独占锁) * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?) * @return */ public boolean tryLock(int acquires){ return jarryAQS.tryLock(acquires); } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ return jarryAQS.tryUnlock(releases); } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ jarryAQS.lockShared(); } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ return jarryAQS.unLockShared(); } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ return tryLockShared(acquires); } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ return jarryAQS.tryUnLockShared(releases); } @Override public Lock readLock() { return new Lock() { @Override public void lock() { jarryAQS.lockShared(); } @Override public void lockInterruptibly() throws InterruptedException { } @Override public boolean tryLock() { return jarryAQS.tryLockShared(1); } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } @Override public void unlock() { jarryAQS.unLockShared(); } @Override public Condition newCondition() { return null; } }; } @Override public Lock writeLock() { return new Lock() { @Override public void lock() { jarryAQS.lock(); } @Override public void lockInterruptibly() throws InterruptedException { } @Override public boolean tryLock() { return jarryAQS.tryLock(1); } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } @Override public void unlock() { jarryAQS.unlock(); } @Override public Condition newCondition() { return null; } }; } }
到了这里,其实JUC的核心-AQS,已经揭露出来了。通过这个,就可以把握住AQS核心运行机制。而实际的AQS,无非就是修改了存储线程的WaitNodes,采用了Node形成链表。并通过head与tail的应用,来提高效率。当然还有lockInterruptibly等没有提及,也有Condition这样的大头没有说。这部分就留待以后有机会,再深入吧。
另外,再给出这方面的提升道路。如果希望更加深入理解AQS源码,可以一边阅读源码(思考源码实现与自己实现的区别),一边扩展自定义简易AQS。
如,我了解到AQS是通过一个state来同时实现独占锁与共享锁的持有数量。那么我就在JarryAQS中,去尝试实现,从而进一步理解它。
五,简易JUC(版本X-扩展state):
1.JarryAQS:
package tech.jarry.learning.netease.locks7; import sun.misc.Unsafe; import java.lang.reflect.Field; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.atomic.AtomicReference; import java.util.concurrent.locks.LockSupport; /** * @Description: * @Author: jarry */ public class JarryAQS { static final int SHARED_SHIFT = 16; static final int SHARED_UNIT = (1 << SHARED_SHIFT); static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; /** Returns the number of shared holds represented in count */ static int sharedCount(int c) { return c >>> SHARED_SHIFT; } /** Returns the number of exclusive holds represented in count */ static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; } /** * The synchronization state. */ public volatile int state; private static Unsafe unsafe; private static long stateOffset; static{ try { Field field = Unsafe.class.getDeclaredField("theUnsafe"); field.setAccessible(true); unsafe = (Unsafe) field.get(null); Field fieldi = JarryAQS.class.getDeclaredField("state"); stateOffset = unsafe.objectFieldOffset(fieldi); } catch (NoSuchFieldException | IllegalAccessException e) { e.printStackTrace(); } } protected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); } volatile AtomicInteger readCount = new AtomicInteger(0); AtomicInteger writeCount = new AtomicInteger(0); AtomicReference<Thread> owner = new AtomicReference<>(); public volatile LinkedBlockingQueue<WaitNode> waiters = new LinkedBlockingQueue<>(); class WaitNode{ Thread thread = null; // 表示希望争取的锁的类型。0表示写锁(独占锁),1表示读锁(共享锁) int type = 0; int arg = 0; public WaitNode(Thread thread, int type, int arg) { this.type = type; this.thread = thread; this.arg = arg; } } /** * 获取独占锁(针对独占锁) */ public void lock(){ int arg = 1; if (!tryLock(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(), 0, arg); waiters.offer(waitNode); while (true){ WaitNode headNote = waiters.peek(); if (headNote !=null && headNote.thread == Thread.currentThread()){ if (!tryLock(headNote.arg)){ LockSupport.park(); } else { waiters.poll(); return; } }else { LockSupport.park(); } } } } /** * 解锁(针对独占锁) */ public void unlock(){ int arg = 1; if (tryUnlock(arg)){ WaitNode head = waiters.peek(); if (head == null){ return; } LockSupport.unpark(head.thread); } } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ int arg = 1; if (!tryLockShared(arg)){ WaitNode waitNode = new WaitNode(Thread.currentThread(),1,arg); waiters.offer(waitNode); while (true){ WaitNode head = waiters.peek(); if (head != null && head.thread == Thread.currentThread()){ if (tryLockShared(head.arg)){ waiters.poll(); WaitNode newHead = waiters.peek(); if (newHead != null && newHead.type == 1){ LockSupport.unpark(newHead.thread); } return; } else { LockSupport.park(); } } else { LockSupport.park(); } } } } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ int arg = 1; if (tryUnLockShared(arg)){ WaitNode head = waiters.peek(); if (head != null){ LockSupport.unpark(head.thread); } return true; } return false; } /** * 尝试获取独占锁(针对独占锁) * @param acquires * @return */ public boolean tryLock(int acquires){ throw new UnsupportedOperationException(); } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ throw new UnsupportedOperationException(); } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ throw new UnsupportedOperationException(); } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ throw new UnsupportedOperationException(); } }
2.JarryReentrantLock:
package tech.jarry.learning.netease.locks7; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; /** * @Description: 仿ReentrantLock,实现其基本功能及特性 * @Author: jarry */ public class JarryReentrantLock implements Lock { private boolean isFair; // 默认采用非公平锁,保证效率(就是参照源码) public JarryReentrantLock() { this.isFair = false; } public JarryReentrantLock(boolean isFair) { this.isFair = isFair; } // 实际源码,是通过Sync类,继承AQS,再进行Override的。 private JarryAQS jarryAQS = new JarryAQS(){ @Override // 源码中,则是将FairSync与NonFairSync作为两个单独内布类(extend Sync),来实现的。那样会更加优雅,耦合度更低,扩展性更好(而且实际源码,需要重写的部分也会更多,而不像这个自定义demo,只有一个tryLock方法需要重写) public boolean tryLock(int acquires){ if (isFair){ return tryFairLock(acquires); } else { return tryNonFairLock(acquires); } } private boolean tryFairLock(int acquires){ // 这里简单注释一下,如何实现公平锁,其关键在于新的线程到来时,不再直接尝试获取锁,而是直接塞入队列(队列为空,也是殊途同归的) // 1.判断读锁(共享锁)是否被占用 if (readCount.get() == 0){ // 2.判断写锁(独占锁)是否被占用 int writeCountValue = writeCount.get(); if (writeCountValue == 0){ // 2.1 (核心区别)如果写锁未被占用,需要先对等待队列waiters进行判断 WaitNode head = waiters.peek(); if (head !=null && head.thread == Thread.currentThread()){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } // 竞争失败就直接返回false了 } } else { // 2.2 如果写锁已经被占用了,就判断是否为当前线程持有,是否进行重入操作 if (owner.get() == Thread.currentThread()){ // 如果持有独占锁的线程就是当前线程,那么不需要改变owner,也不需要CAS,只需要修改writeCount的值即可 writeCount.set(writeCountValue + acquires); return true; } } } // 以上操作失败,就返回false,表示竞争锁失败 return false; } private boolean tryNonFairLock(int acquires){ if (readCount.get() == 0){ int writeCountValue = writeCount.get(); if (writeCountValue == 0){ if (writeCount.compareAndSet(writeCountValue,writeCountValue+acquires)){ owner.set(Thread.currentThread()); return true; } } else { if (Thread.currentThread() == owner.get()){ writeCount.set(writeCountValue+acquires); return true; } } } return false; } @Override /** * 先通过临时变量c,判断是否接下来的操作会完全解锁。 如果完全解锁,先释放owner,再通过setState将count(源码中为state)修改为0。 这样调换了一下顺序,但是避免了owner的原子性问题(毕竟别的线程是通过state来判断是否可以竞争锁,修改owner的)。 */ public boolean tryUnlock(int releases) { if (owner.get() != Thread.currentThread()){ throw new IllegalMonitorStateException(); } int writeCountNextValue = writeCount.get() - releases; boolean result = false; if (writeCountNextValue == 0){ result = true; owner.set(null); } writeCount.set(writeCountNextValue); return result; } // 其它诸如共享锁的相关操作,就不进行了。如果强行调用,只会发生UnsupportedOperationException }; @Override public void lock() { jarryAQS.lock(); } @Override public void lockInterruptibly() throws InterruptedException { } @Override public boolean tryLock() { return jarryAQS.tryLock(1); } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } @Override public void unlock() { jarryAQS.unlock(); } @Override public Condition newCondition() { return null; } }
3.JarryReadWriteLock:
package tech.jarry.learning.netease.locks7; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReadWriteLock; /** * @Description: * @Author: jarry */ public class JarryReadWriteLock implements ReadWriteLock { // 实际源码,是通过Sync类,继承AQS,再进行Override的。 private JarryAQS jarryAQS = new JarryAQS(){ @Override public boolean tryLock(int acquires){ int stateTemp = state; if (sharedCount(stateTemp) == 0){ int writeCountValue = exclusiveCount(stateTemp); if (writeCountValue == 0){ if (compareAndSetState(stateTemp,stateTemp+acquires)){ owner.set(Thread.currentThread()); return true; } } else { if (Thread.currentThread() == owner.get()){ compareAndSetState(stateTemp,stateTemp+acquires); return true; } } } return false; } @Override public boolean tryUnlock(int releases) { int stateTemp = state; if (owner.get() != Thread.currentThread()){ throw new IllegalMonitorStateException(); } int writeCountNextValue = exclusiveCount(stateTemp) - releases; boolean result = false; if (writeCountNextValue == 0){ result = true; owner.set(null); } compareAndSetState(stateTemp,stateTemp - releases); return result; } @Override public boolean tryLockShared(int acquires) { while (true){ int stateTemp = state; if (exclusiveCount(stateTemp) == 0 || owner.get() == Thread.currentThread()){ if (compareAndSetState(stateTemp, stateTemp+SHARED_UNIT*acquires)){ return true; } } return false; } } @Override public boolean tryUnLockShared(int releases) { while (true){ int stateTemp = state; int readCountValue = sharedCount(stateTemp); int readCountNext = readCountValue - releases; if (compareAndSetState(stateTemp, stateTemp-SHARED_UNIT*readCountNext)){ return readCountNext == 0; } } } }; /** * 获取独占锁(针对独占锁) */ public void lock(){ jarryAQS.lock(); } /** * 解锁(针对独占锁) */ public void unlock(){ jarryAQS.unlock(); } /** * 尝试获取独占锁(针对独占锁) * @param acquires 用于加锁次数。一般传入waitNode.arg(本代码中就是1。为什么不用一个常量1,就不知道了?) * @return */ public boolean tryLock(int acquires){ return jarryAQS.tryLock(acquires); } /** * 尝试解锁(针对独占锁) * @param releases 用于设定解锁次数。一般传入waitNode.arg * @return */ public boolean tryUnlock(int releases){ return jarryAQS.tryUnlock(releases); } /** * 获取共享锁(针对共享锁) */ public void lockShared(){ jarryAQS.lockShared(); } /** * 解锁(针对共享锁) */ public boolean unLockShared(){ return jarryAQS.unLockShared(); } /** * 尝试获取共享锁(针对共享锁) * @param acquires * @return */ public boolean tryLockShared(int acquires){ return tryLockShared(acquires); } /** * 尝试解锁(针对共享锁) * @param releases * @return */ public boolean tryUnLockShared(int releases){ return jarryAQS.tryUnLockShared(releases); } @Override public Lock readLock() { return new Lock() { @Override public void lock() { jarryAQS.lockShared(); } @Override public void lockInterruptibly() throws InterruptedException { } @Override public boolean tryLock() { return jarryAQS.tryLockShared(1); } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } @Override public void unlock() { jarryAQS.unLockShared(); } @Override public Condition newCondition() { return null; } }; } @Override public Lock writeLock() { return new Lock() { @Override public void lock() { jarryAQS.lock(); } @Override public void lockInterruptibly() throws InterruptedException { } @Override public boolean tryLock() { return jarryAQS.tryLock(1); } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } @Override public void unlock() { jarryAQS.unlock(); } @Override public Condition newCondition() { return null; } }; } }
六,总结:
如果是从ReentrantLock实现,一步步走到这里,手动撸到这里,那么你对AQS的认知,就有了非常坚实的基础。如果能够在学习过程中,对照源码学习(一边自己实现,一边了解源码是怎么解决相关问题的),那么你对AQS的理解就很不错了。即使有所欠缺,也只是AQS阅读积累方面了。
来源:https://www.cnblogs.com/Tiancheng-Duan/p/12010076.html