问题
I have hourly time series and would like to interpolate sub-hourly values like every 15 min. Linear interpolation will do. But if there is any way to specify Gaussian, Polynomial, that would be great.
For example if I have
a<-c(4.5,7,3.3) which is the first three hour data. How can I get 15 min sub-hourly data, total of 9 values in this case? I have been using approx function and studying zoo package and still don't know how I can do it. Thank you very much!
回答1:
Within xts package, you can either na.approx or na.spline.
- Coerce you times series to an
xtsobject - Create a new index having 15 minutes intervals
- Use this new index to create a NULL xts object that you merge with your object
- Approximate missing values using
na.approxfor linear/constant approx orna.splinefor polynomial one.
here a complete example:
library(xts)
set.seed(21)
## you create the xts object
x <- xts(rnorm(10),
seq(from=as.POSIXct(Sys.Date()),
length.out=10,
by=as.difftime(1,units='hours')))
## new index to be used
new.index <-
seq(min(index(x)),max(index(x)), by=as.difftime(15,units='mins'))
## linear approx
na.approx(merge(x,xts(NULL,new.index)))
## polynomial approx
na.spline(merge(x,xts(NULL,new.index)))
回答2:
How about this:
b<-xts(c(4.5,7,3.3), order.by=as.POSIXct(c('2013-07-26 0:00',
'2013-07-26 2:00',
'2013-07-26 3:00')))
approx(b, n=13) ,
adjusting n for the appropriate time interval?
来源:https://stackoverflow.com/questions/17885155/interpolation-in-r