问题
I'm trying to build an Augmented Reality application in Android using BoofCV (OpenCV alternative for Java) and OpenGL ES 2.0. I have a marker which I can get the image points of and "world to cam" transformation using BoofCV's solvePnP function. I want to be able to draw the marker in 3D using OpenGL. Here's what I have so far:
On every frame of the camera, I call solvePnP
Se3_F64 worldToCam = MathUtils.worldToCam(__qrWorldPoints, imagePoints);
mGLAssetSurfaceView.setWorldToCam(worldToCam);
This is what I have defined as the world points
static float qrSideLength = 79.365f; // mm
private static final double[][] __qrWorldPoints = {
{qrSideLength * -0.5, qrSideLength * 0.5, 0},
{qrSideLength * -0.5, qrSideLength * -0.5, 0},
{qrSideLength * 0.5, qrSideLength * -0.5, 0},
{qrSideLength * 0.5, qrSideLength * 0.5, 0}
};
I'm feeding it a square that has origin at its center, with a sidelength in millimeters.
I can confirm that the rotation vector and translation vector I'm getting back from solvePnP are reasonable, so I don't know if there's a problem here.
I pass the result from solvePnP into my renderer
public void setWorldToCam(Se3_F64 worldToCam) {
DenseMatrix64F _R = worldToCam.R;
Vector3D_F64 _T = worldToCam.T;
// Concatenating the the rotation and translation vector into
// a View matrix
double[][] __view = {
{_R.get(0, 0), _R.get(0, 1), _R.get(0, 2), _T.getX()},
{_R.get(1, 0), _R.get(1, 1), _R.get(1, 2), _T.getY()},
{_R.get(2, 0), _R.get(2, 1), _R.get(2, 2), _T.getZ()},
{0, 0, 0, 1}
};
DenseMatrix64F _view = new DenseMatrix64F(__view);
// Matrix to convert from BoofCV (OpenCV) coordinate system to OpenGL coordinate system
double[][] __cv_to_gl = {
{1, 0, 0, 0},
{0, -1, 0, 0},
{0, -1, 0, 0},
{0, 0, 0, 1}
};
DenseMatrix64F _cv_to_gl = new DenseMatrix64F(__cv_to_gl);
// Multiply the View Matrix by the BoofCV to OpenGL matrix to apply the coordinate transform
DenseMatrix64F view = new SimpleMatrix(__view).mult(new SimpleMatrix(__cv_to_gl)).getMatrix();
// BoofCV stores matrices in row major order, but OpenGL likes column major order
// I transpose the view matrix and get a flattened list of 16,
// Then I convert them to floating point
double[] viewd = new SimpleMatrix(view).transpose().getMatrix().getData();
for (int i = 0; i < mViewMatrix.length; i++) {
mViewMatrix[i] = (float) viewd[i];
}
}
I'm also using the camera intrinsics I get from camera calibration to feed into the projection matrix of OpenGL
@Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
// this projection matrix is applied to object coordinates
// in the onDrawFrame() method
double fx = MathUtils.fx;
double fy = MathUtils.fy;
float fovy = (float) (2 * Math.atan(0.5 * height / fy) * 180 / Math.PI);
float aspect = (float) ((width * fy) / (height * fx));
// be careful with this, it could explain why you don't see certain objects
float near = 0.1f;
float far = 100.0f;
Matrix.perspectiveM(mProjectionMatrix, 0, fovy, aspect, near, far);
GLES20.glViewport(0, 0, width, height);
}
The square I'm drawing is the one defined in this Google example.
@Override
public void onDrawFrame(GL10 gl) {
// redraw background color
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
// Set the camera position (View matrix)
// Matrix.setLookAtM(mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);
// Combine the rotation matrix with the projection and camera view
// Note that the mMVPMatrix factor *must be the first* in order
// for matrix multiplication product to be correct
// Calculate the projection and view transformation
Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, 0);
// Draw shape
mSquare.draw(mMVPMatrix);
}
I believe the problem has to do with the fact that this definition of a square in Google's example code doesn't take the real world side length into account. I understand that the OpenGL coordinate system has the corners (-1, 1), (-1, -1), (-1, 1), (1, 1) which doesn't correspond to the millimeter object points I have defined for use in BoofCV, even though they are in the right order.
static float squareCoords[] = {
-0.5f, 0.5f, 0.0f, // top left
-0.5f, -0.5f, 0.0f, // bottom left
0.5f, -0.5f, 0.0f, // bottom right
0.5f, 0.5f, 0.0f }; // top right
来源:https://stackoverflow.com/questions/44313684/using-opencv-solvepnp-for-augmented-reality-in-opengl