问题
I have tried writing the below code to find sum of 'n' numbers using sum function. I am getting the correct response in output. But i am unable to return that using sum function, as i always have to return a function, which is required for curried effect.
Please help. Thanks in advance.
var output = 0,
chain;
function sum() {
var args = Array.prototype.slice.call(arguments);
output += args.reduce(function(a, b) {
return a + b;
});
sumCurried = sum.bind(output);
sumCurried.val = function() {
return output;
}
return sumCurried;
}
debugger;
document.getElementById('demo').innerHTML = sum(1, 2)(3)(4);
// document.getElementById('demo').innerHTML = sum(1)(3)(4);
<p id='demo'></p>
enter code here
回答1:
You can add a stop condition to the curried function, for example - if the function is called without an argument return the output:
var output = 0,
chain;
function sum() {
var args = Array.prototype.slice.call(arguments);
if(args.length === 0) {
return output;
}
output += args.reduce(function(a, b) {
return a + b;
});
sumCurried = sum.bind(output);
return sumCurried;
}
console.log(sum(1, 2)(3)(4)());
<p id='demo'></p>
The returned curry function has a val
property, which is a function that returns the current value:
var output = 0,
chain;
function sum() {
var args = Array.prototype.slice.call(arguments);
output += args.reduce(function(a, b) {
return a + b;
});
sumCurried = sum.bind(output);
sumCurried.val = function() {
return output;
}
return sumCurried;
}
console.log(sum(1, 2)(3)(4).val());
<p id='demo'></p>
回答2:
Why would you use currying at all? However, here is a shorter version:
const sum = (...args) => {
const func = (...s)=> sum(...args,...s);
func.value = args.reduce((a,b)=>a+b,0);
return func;
};
//usable as
sum(1,2).value,
sum(1,1)(1).value,
sum(1,1)(1,1)(1,1).value
And you always need to end the currying chain. However, it can be shortified:
func.valueOf = ()=> args.reduce((a,b)=>a+b,0);
//( instead of func.value = ... )
So when called you can do:
+sum(1,2,3)
+sum(1)(1)(1)
来源:https://stackoverflow.com/questions/46286531/how-to-write-a-sum-function-with-infinite-number-of-arguments-using-currying-in