问题
I have several expressions of an undefined function some of which contain the corresponding (undefined) derivatives of that function. Both the function and its derivatives exist only as numerical data. I want to make functions out of my expressions and then call that function with the corresponding numerical data to numerically compute the expression. Unfortunately I have run into a problem with lambdify.
Consider the following simplified example:
import sympy
import numpy
# define a parameter and an unknown function on said parameter
t = sympy.Symbol('t')
s = sympy.Function('s')(t)
# a "normal" expression
a = t*s**2
print(a)
#OUT: t*s(t)**2
# an expression which contains a derivative
b = a.diff(t)
print(b)
#OUT: 2*t*s(t)*Derivative(s(t), t) + s(t)**2
# generate an arbitrary numerical input
# for demo purposes lets assume that s(t):=sin(t)
t0 = 0
s0 = numpy.sin(t0)
sd0 = numpy.cos(t0)
# labdify a
fa = sympy.lambdify([t, s], a)
va = fa(t0, s0)
print (va)
#OUT: 0
# try to lambdify b
fb = sympy.lambdify([t, s, s.diff(t)], b) # this fails with syntax error
vb = fb(t0, s0, sd0)
print (vb)
Error message:
File "<string>", line 1
lambda _Dummy_142,_Dummy_143,Derivative(s(t), t): (2*_Dummy_142*_Dummy_143*Derivative(_Dummy_143, _Dummy_142) + _Dummy_143**2)
^
SyntaxError: invalid syntax
Apparently the Derivative object is not resolved correctly, how can I work around that?
As an alternative to lambdify I'm also open to using theano or cython based solutions, but I have encountered similar problems with the corresponding printers.
Any help is appreciated.
回答1:
As far as I can tell, the problem originates from an incorrect/unfortunate dummification process within the lambdify function. I have written my own dummification function that I apply to the parameters as well as the expression before passing them to lambdifying.
def dummify_undefined_functions(expr):
mapping = {}
# replace all Derivative terms
for der in expr.atoms(sympy.Derivative):
f_name = der.expr.func.__name__
var_names = [var.name for var in der.variables]
name = "d%s_d%s" % (f_name, 'd'.join(var_names))
mapping[der] = sympy.Symbol(name)
# replace undefined functions
from sympy.core.function import AppliedUndef
for f in expr.atoms(AppliedUndef):
f_name = f.func.__name__
mapping[f] = sympy.Symbol(f_name)
return expr.subs(mapping)
Use like this:
params = [dummify_undefined_functions(x) for x in [t, s, s.diff(t)]]
expr = dummify_undefined_functions(b)
fb = sympy.lambdify(params, expr)
Obviously this is somewhat brittle:
- no guard against name-collisions
- perhaps not the best possible name-scheme: df_dxdy for
Derivative(f(x,y), x, y) - it is assumed that all derivatives are of the form:
Derivative(s(t), t, ...)withs(t)being anUndefinedFunctionandtaSymbol. I have no idea what will happen if any argument to Derivative is a more complex expression. I kind of think/hope that the (automatic) simplification process will reduce any more complex derivative into an expression consisting of 'basic' derivatives. But I certainly do not guard against it. - largely untested (except for my specific use-cases)
Other than that it works quite well.
回答2:
The similar question was discussed at here
You just need to define your own function and define its derivative as another function:
def f_impl(x):
return x**2
def df_impl(x):
return 2*x
class df(sy.Function):
nargs = 1
is_real = True
_imp_ = staticmethod(df_impl)
class f(sy.Function):
nargs = 1
is_real = True
_imp_ = staticmethod(f_impl)
def fdiff(self, argindex=1):
return df(self.args[0])
t = sy.Symbol('t')
print f(t).diff().subs({t:0.1})
expr = f(t) + f(t).diff()
expr_real = sy.lambdify(t, expr)
print expr_real(0.1)
回答3:
First off, rather than an UndefinedFunction, you could go ahead and use the implemented_function function to tie your numerical implementation of s(t) to a symbolic function.
Then, if you are constrained to discrete numerical data defining the function whose derivative occurs in the troublesome expression, much of the time, the numerical evaluation of the derivative may come from finite differences. As an alternative, sympy can automatically replace derivative terms with finite differences, and let the resulting expression be converted to a lambda. For example:
import sympy
import numpy
from sympy.utilities.lambdify import lambdify, implemented_function
from sympy import Function
# define a parameter and an unknown function on said parameter
t = sympy.Symbol('t')
s = implemented_function(Function('s'), numpy.cos)
print('A plain ol\' expression')
a = t*s(t)**2
print(a)
print('Derivative of above:')
b = a.diff(t)
print(b)
# try to lambdify b by first replacing with finite differences
dx = 0.1
bapprox = b.replace(lambda arg: arg.is_Derivative,
lambda arg: arg.as_finite_difference(points=dx))
print('Approximation of derivatives:')
print(bapprox)
fb = sympy.lambdify([t], bapprox)
t0 = 0.0
vb = fb(t0)
print(vb)
来源:https://stackoverflow.com/questions/29920641/lambdify-a-sympy-expression-that-contains-a-derivative-of-undefinedfunction