问题
The data I have is a list of data frames. I want to loop through each of the data frame to find:
- If there are columns with duplicate column names. If yes, then I
want to merge them by using
rbind()
in a parent data frame calledoutput
and remove all other columns of such data frames. - I also want to check if there is any data frame that doesn't have duplicate
columns. If yes, then remove all the columns except the first one. Then
cbind()
withoutput
such that if rows are more or less than what was created by (1) thenzero
should be added.
I tried using lappy()
, but my logic to get above two isn't working at one go. Any suggestion will help.
output <- lapply(data, function(x) {
})
Input Data List Containing Data Frames
list(A = structure(list(`A-DIODE` = c(1.2, 0.4), `A-DIODE` = c(1.3,
0.6)), row.names = c(NA, -2L), class = "data.frame"), B = structure(list(
`B-DIODE` = c(1.4, 0.8), `B-ACC1` = c(1.5, 1), `B-ACC2` = c(1.6,
1.2), `B-ANA0` = c(1.7, 1.4), `B-ANA1` = c(1.8, 1.6), `B-BRICKID` = c(1.9,
1.8), `B-CC0` = c(2L, 2L), `B-CC1` = c(2.1, 2.2), `B-DIGDN` = c(2.2,
2.4), `B-DIGDP` = c(2.3, 2.6), `B-DN1` = c(2.4, 2.8), `B-DN2` = c(2.5,
3), `B-DP1` = c(2.6, 3.2), `B-DP2` = c(2.7, 3.4), `B-SCL` = c(2.8,
3.6), `B-SDA` = c(2.9, 3.8), `B-USB0DN` = 3:4, `B-USB0DP` = c(3.1,
4.2), `B-USB1DN` = c(3.2, 4.4), `B-USB1DP` = c(3.3, 4.6),
`B-ACC1` = c(3.4, 4.8), `B-ACC2` = c(3.5, 5), `B-ANA0` = c(3.6,
5.2), `B-ANA1` = c(3.7, 5.4), `B-BRICKID` = c(3.8, 5.6),
`B-CC0` = c(3.9, 5.8), `B-CC1` = c(4L, 6L), `B-DIGDN` = c(4.1,
6.2), `B-DIGDP` = c(4.2, 6.4), `B-DN1` = c(4.3, 6.6), `B-DN2` = c(4.4,
6.8), `B-DP1` = c(4.5, 7), `B-DP2` = c(4.6, 7.2), `B-SCL` = c(4.7,
7.4), `B-SDA` = c(4.8, 7.6), `B-USB0DN` = c(4.9, 7.8), `B-USB0DP` = c(5L,
8L), `B-USB1DN` = c(5.1, 8.2), `B-USB1DP` = c(5.2, 8.4),
`B-NA` = c(5.3, 8.6), `B-ACC2PWRLKG_0v4` = c(5.4, 8.8), `B-ACC2PWRLKG_0v4` = c(5.5,
9), `B-P_IN_Leak` = c(5.6, 9.2)), row.names = c(NA, -2L), class = "data.frame"))
Desired Output
> A
A-DIODE
1.2
0.4
1.3
0.6
> B
B-DIODE
1.4
0.8
> Output
A-DIODE B-DIODE
1.2 1.4
0.4 0.8
1.3 0
0.6 0
回答1:
Loop through the list
, create a condition with if/else
that checks the length
of the unique
column names and returns the unlist
ed single data.frame when there is only a single unique column or else return the first column. Finally, with cbind.fill
(from rowr
) bind the list
of data.frame
columns together, specifying the fill
as 0
lst2 <- lapply(lst1, function(x) if(length(unique(names(x))) ==1)
setNames(data.frame(unlist(x)), names(x)[1]) else x[1])
do.call(rowr::cbind.fill, c(lst2, list(fill = 0)))
# A.DIODE B.DIODE
#1 1.2 1.4
#2 0.4 0.8
#3 1.3 0.0
#4 0.6 0.0
来源:https://stackoverflow.com/questions/54562588/analyze-data-frames-in-a-list-and-bind-the-results