Compute EWMA over sparse/irregular TimeSeries in Pandas

孤街醉人 提交于 2019-12-07 13:19:00

问题


Given the following high-frequency but sparse time series:

#Sparse Timeseries
dti1 = pd.date_range(start=datetime(2015,8,1,9,0,0),periods=10,freq='ms')
dti2 = pd.date_range(start=datetime(2015,8,1,9,0,10),periods=10,freq='ms')
dti = dti1 + dti2

ts = pd.Series(index=dti, data=range(20))

I can compute an exponentially weighted moving average with a halflife of 5ms using a pandas function as follows:

ema = pd.ewma(ts, halflife=5, freq='ms')

However, under the hood, the function is resampling my timeseries with an interval of 1 ms (which is the 'freq' that I supplied). This causes thousands of additional datapoints to be included in the output.

In [118]: len(ts)
Out[118]: 20
In [119]: len(ema)
Out[119]: 10010

This is not scalable, as my real Timeseries contains hundreds of thousands of high-frequency observations that are minutes or hours apart.

Is there a Pandas/numpy way of computing an EMA for a sparse timeseries without resampling? Something similar to this: http://oroboro.com/irregular-ema/

Or, do i have to write my own? Thanks!


回答1:


You can use reindex to align the ewma result with your original series.

pd.ewma(ts, halflife=5, freq='ms').reindex(ts.index)

2015-08-01 09:00:00.000     0.0000
2015-08-01 09:00:00.001     0.5346
2015-08-01 09:00:00.002     1.0921
2015-08-01 09:00:00.003     1.6724
2015-08-01 09:00:00.004     2.2750
2015-08-01 09:00:00.005     2.8996
2015-08-01 09:00:00.006     3.5458
2015-08-01 09:00:00.007     4.2131
2015-08-01 09:00:00.008     4.9008
2015-08-01 09:00:00.009     5.6083
2015-08-01 09:00:10.000    10.0000
2015-08-01 09:00:10.001    10.5346
2015-08-01 09:00:10.002    11.0921
2015-08-01 09:00:10.003    11.6724
2015-08-01 09:00:10.004    12.2750
2015-08-01 09:00:10.005    12.8996
2015-08-01 09:00:10.006    13.5458
2015-08-01 09:00:10.007    14.2131
2015-08-01 09:00:10.008    14.9008
2015-08-01 09:00:10.009    15.6083
dtype: float64


来源:https://stackoverflow.com/questions/31769047/compute-ewma-over-sparse-irregular-timeseries-in-pandas

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!