How do I scale an FFT-based cross-correlation such that its peak is equal to Pearson's rho

若如初见. 提交于 2019-12-06 07:02:46

The normalised cross correlation between two N-periodic discrete signals F and G is defined as:

Since the numerator is a dot product between two vectors (F and G_x) and the denominator is the product of the norm of these two vectors, the scalar r_x must indeed lie between -1 and +1 and it is the cosinus of the angle between the vectors (See there). If the vector F and G_x are aligned, then r_x=1. If r_x=1, then the vector F and G_x are aligned due to the triangular inequality. To ensure these properties, the vectors at the numerator must match those at the denominator.

All numerators can be computed at once by using the Discrete Fourier Transform. Indeed, that transform turns the convolution into pointwise products in the Fourier space. Here is why the different estimated normalized cross correlations are not 1 in the tests you performed.

  1. For the first test "approx", sample_1 and sample_2 are both extracted from a periodic signal. Both are of the same length, but the length is not a multiple of the period as it is 2.5 periods (5pi) (figure below). As a result, since the dft performs the correlation as if they where periodic signals, it is found that sample_1 and sample_2 are not perfectly correlated and r_x<1.

  2. For the second test rho_exact_1, the convolution is performed on signals of length N=128, but the norms at the denominator are computed on truncated vectors of size N-offset=128-5. As a result, the properties of r_x are lost. In addition, it must be noticed that the proposed convolution and norms are not normalized: the computed norms and convolution product are globally proportionnal to the number of points of the considered vectors. As a result, the norms of the truncated vectors are slightly lower compared to the previous case and r_x increases: values larger that 1 are likely encountered as the offset increases.

  3. For the third test rho_exact_2, a scaling factor is introduced to try to correct the first test: the properties of r_x are also lost and values larger than one can be encountered as the scaling factor is larger than one.

Nevertheless, the function corrcoef() of numpy actually computes a r_x equal to 1 for the truncated signals. Indeed, these signals are perfectly identical! The same result can be obtained using DFTs:

xc_num_cropped = np.abs(np.fft.ifft(np.fft.fft(sample_1_cropped)*np.fft.fft(sample_2_cropped).conjugate()))
autocorrelation_1_cropped = np.abs(np.fft.ifft(np.fft.fft(sample_1_cropped)*np.fft.fft(sample_1_cropped).conjugate()))
autocorrelation_2_cropped = np.abs(np.fft.ifft(np.fft.fft(sample_2_cropped)*np.fft.fft(sample_2_cropped).conjugate()))
xc_denom_exact_11 = np.sqrt(np.max(autocorrelation_1_cropped))*np.sqrt(np.max(autocorrelation_2_cropped))
rho_exact_11 = xc_num_cropped/xc_denom_exact_11
print 'rho_exact_11',np.max(rho_exact_11)  

To provide the user with a significant value for r_x, you can stick to the value provided by the first test, which can be lower than one for identical periodic signals if the length of the frame is not a multiple of the period. To correct this drawback, the estimated offset can also be retreived and used to build two cropped signals of the same length. The whole correlation procedure must be re-run to get a new value for r_x, which will not be plaged by the fact that the length of the cropped frame is not a multiple of the period.

Lastly, if the DFT is a very efficient way to compute the convolution at the numerator for all values of x at once, the denominator can be efficiently computed as 2-norms of vector, using numpy.linalg.norm. Since the argmax(r_x) for the cropped signals will likely be zero if the first correlation was successful, it could be sufficient to compute r_0 using a dot product `sample_1_cropped.dot(sample_2_cropped).

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!