PCL1.8.1 Feature - FPFH

好久不见. 提交于 2019-12-05 23:17:13

Fast Point Feature Histograms (FPFH)

执行效率慢,占用大量CPU

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);


// Create the FPFH estimation class, and pass the input dataset+normals to it

pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
//使用OMP多线程加速执行,待验证
//pcl::FPFHEstimationOMP<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
//fpfh.setNumberOfThreads(8);

fpfh.setInputCloud(cloud);
fpfh.setInputNormals(normals);
// alternatively, if cloud is of tpe PointNormal, do fpfh.setInputNormals (cloud);

// Create an empty kdtree representation, and pass it to the FPFH estimation object.
// Its content will be filled inside the object, based on the given input dataset (as no other search surface is given).
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);

fpfh.setSearchMethod(tree);

// Output datasets
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs(new pcl::PointCloud<pcl::FPFHSignature33>());

// Use all neighbors in a sphere of radius 5cm
// IMPORTANT: the radius used here has to be larger than the radius used to estimate the surface normals!!!
fpfh.setRadiusSearch(0.05);

// Compute the features
fpfh.compute(*fpfhs);

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!