Lower triangular matrix in julia

夙愿已清 提交于 2019-12-05 16:24:26
Michael Ohlrogge

Here is something taking inspiration from Code by Stefan Karpinski on the Julia User's list:

function vec2ltri_alt{T}(v::AbstractVector{T}, z::T=zero(T))
    n = length(v)
    v1 = vcat(0,v)
    s = round(Int,(sqrt(8n+1)-1)/2)
    s*(s+1)/2 == n || error("vec2utri: length of vector is not triangular")
    s+=1
    [ i>j ? v1[round(Int, j*(j-1)/2+i)] : (i == j ? z : NaN) for i=1:s, j=1:s ]
end

julia> vec2ltri_alt(collect(1:6))
4x4 Array{Any,2}:
 0  NaN  NaN  NaN
 1    0  NaN  NaN
 2    3    0  NaN
 3    4    6    0

Note: If desired, check out the official documentation on the ternary operator for a bit more clarity on what is going on with the ? ... : syntax here.

For those looking for a more "standard" diagonal matrix solution:

Here is a version that creates a more standard solution:

function vec2ltri{T}(v::AbstractVector{T}, z::T=zero(T))
    n = length(v)
    s = round(Int,(sqrt(8n+1)-1)/2)
    s*(s+1)/2 == n || error("vec2utri: length of vector is not triangular")
    [ i>=j ? v[round(Int, j*(j-1)/2+i)] : z for i=1:s, j=1:s ]
end

a = vec2ltri(collect(1:6))

julia> a = vec2ltri(collect(1:6))
3x3 Array{Int64,2}:
 1  0  0
 2  3  0
 3  4  6

julia> istril(a)  ## verify matrix is lower triangular
true

If you want upper triangular: instead of lower, just change the i<=j to i>=j.

Other random tools Note also functions like tril!(a) which will convert in place a given matrix to lower triangular, replacing everything above the main diagonal with zeros. See the Julia documentation for more info on this function, as well as various other related tools.

You might want to use a list comprehension. But it would be good if you could give more information in the question about what you are trying to do.

numrows =4
numcols = 4
[ x>y ? 1 : (x == y ? 0 : NaN) for x in 1:numrows, y in 1:numcols]

which will give:

 0  NaN  NaN  NaN
 1    0  NaN  NaN
 1    1    0  NaN
 1    1    1    0

For any number of rows and columns. And then you can work from there.

See docs for list comprehensions & conditionals:

http://docs.julialang.org/en/release-0.4/manual/arrays/#comprehensions

http://docs.julialang.org/en/release-0.4/manual/control-flow/#man-conditional-evaluation

The accepted solution does not index all elements of the vector in order, and the output matrix has repeated elements. The formula is wrong. Here is my proposal, inspired by previous answers:

For lower triangular matrix:

function vec2ltri{T}(v::Vector{T})
    d = length(v)
    n = Int((sqrt(8d+1)+1)/2)
    n*(n-1)/2 == d || error("vec2ltri: length of vector is not triangular")
    [ i>j ? v[Int((2n-j)*(j-1)/2)+i-j] : 0 for i=1:n, j=1:n ]
end

which will output:

julia> vec2ltri(collect(1:6))
4×4 Array{Int64,2}:
 0  0  0  0
 1  0  0  0
 2  4  0  0
 3  5  6  0

For upper triangular matrix:

function vec2utri{T}(v::Vector{T})
    d = length(v)
    n = Int((sqrt(8d+1)+1)/2)
    n*(n-1)/2 == d || error("vec2utri: length of vector is not triangular")
    [ i<j ? v[Int((j-1)*(j-2)/2)+i] : 0 for i=1:n, j=1:n ]
end

which will output:

julia> vec2utri(collect(1:6))
4×4 Array{Int64,2}:
 0  1  2  4
 0  0  3  5
 0  0  0  6
 0  0  0  0
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!