Terms Aggregation for nested field in Elastic Search

让人想犯罪 __ 提交于 2019-12-05 09:58:33

So as I've said. Your issue is that your text is analyzed and elasticsearch always aggregates at token level. So in order to fix that, your field values have to be indexed as single tokens. There are two options:

  • not to analyze them
  • index them using keyword analyzer + lowercase (case insensitive aggs)

So that would be settings to create custom keyword analyzer with lowercase filter and removed accent characters (ö => o and ß => ss and additional fields for your fields, so they can be used for aggregation (raw and keyword):

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer_keyword": {
          "type": "custom",
          "tokenizer": "keyword",
          "filter": [
            "asciifolding",
            "lowercase"
          ]
        }
      }
    }
  },
  "mappings": {
    "data": {
      "properties": {
        "products_filter": {
          "type": "nested",
          "properties": {
            "filter_name": {
              "type": "string",
              "analyzer": "standard",
              "fields": {
                "raw": {
                  "type": "string",
                  "index": "not_analyzed"
                },
                "keyword": {
                  "type": "string",
                  "analyzer": "my_analyzer_keyword"
                }
              }
            },
            "filter_value": {
              "type": "string",
              "analyzer": "standard",
              "fields": {
                "raw": {
                  "type": "string",
                  "index": "not_analyzed"
                },
                "keyword": {
                  "type": "string",
                  "analyzer": "my_analyzer_keyword"
                }
              }
            }
          }
        }
      }
    }
  }
}

A test document, you've given us:

PUT /test/data/1
{
  "products_filter": [
    {
      "filter_name": "Rahmengröße",
      "filter_value": "33,5 cm"
    },
    {
      "filter_name": "color",
      "filter_value": "gelb"
    },
    {
      "filter_name": "Rahmengröße",
      "filter_value": "39,5 cm"
    },
    {
      "filter_name": "Rahmengröße",
      "filter_value": "45,5 cm"
    }
  ]
}

That would be query to aggregate using raw field:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "Nesting": {
      "nested": {
        "path": "products_filter"
      },
      "aggs": {
        "raw_names": {
          "terms": {
            "field": "products_filter.filter_name.raw",
            "size": 0
          },
          "aggs": {
            "raw_values": {
              "terms": {
                "field": "products_filter.filter_value.raw",
                "size": 0
              }
            }
          }
        }
      }
    }
  }
}

It does bring expected result (buckets with filter names and subbuckets with their values):

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "Nesting": {
      "doc_count": 4,
      "raw_names": {
        "doc_count_error_upper_bound": 0,
        "sum_other_doc_count": 0,
        "buckets": [
          {
            "key": "Rahmengröße",
            "doc_count": 3,
            "raw_values": {
              "doc_count_error_upper_bound": 0,
              "sum_other_doc_count": 0,
              "buckets": [
                {
                  "key": "33,5 cm",
                  "doc_count": 1
                },
                {
                  "key": "39,5 cm",
                  "doc_count": 1
                },
                {
                  "key": "45,5 cm",
                  "doc_count": 1
                }
              ]
            }
          },
          {
            "key": "color",
            "doc_count": 1,
            "raw_values": {
              "doc_count_error_upper_bound": 0,
              "sum_other_doc_count": 0,
              "buckets": [
                {
                  "key": "gelb",
                  "doc_count": 1
                }
              ]
            }
          }
        ]
      }
    }
  }
}

Alternitavely, you could use field with keyword analyzer (and some normalization) to get a bit more generic and case insensitive results:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "Nesting": {
      "nested": {
        "path": "products_filter"
      },
      "aggs": {
        "keyword_names": {
          "terms": {
            "field": "products_filter.filter_name.keyword",
            "size": 0
          },
          "aggs": {
            "keyword_values": {
              "terms": {
                "field": "products_filter.filter_value.keyword",
                "size": 0
              }
            }
          }
        }
      }
    }
  }
}

That's the result:

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "Nesting": {
      "doc_count": 4,
      "keyword_names": {
        "doc_count_error_upper_bound": 0,
        "sum_other_doc_count": 0,
        "buckets": [
          {
            "key": "rahmengrosse",
            "doc_count": 3,
            "keyword_values": {
              "doc_count_error_upper_bound": 0,
              "sum_other_doc_count": 0,
              "buckets": [
                {
                  "key": "33,5 cm",
                  "doc_count": 1
                },
                {
                  "key": "39,5 cm",
                  "doc_count": 1
                },
                {
                  "key": "45,5 cm",
                  "doc_count": 1
                }
              ]
            }
          },
          {
            "key": "color",
            "doc_count": 1,
            "keyword_values": {
              "doc_count_error_upper_bound": 0,
              "sum_other_doc_count": 0,
              "buckets": [
                {
                  "key": "gelb",
                  "doc_count": 1
                }
              ]
            }
          }
        ]
      }
    }
  }
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!