Calculate Coefficients of 2nd Order Butterworth Low Pass Filter

你离开我真会死。 提交于 2019-12-05 05:16:52

Here you go. ff is the frequency ratio, 0.1 in your case:

    const double ita =1.0/ tan(M_PI*ff);
    const double q=sqrt(2.0);
    b0 = 1.0 / (1.0 + q*ita + ita*ita);
    b1= 2*b0;
    b2= b0;
    a1 = 2.0 * (ita*ita - 1.0) * b0;
    a2 = -(1.0 - q*ita + ita*ita) * b0;

and the result is:

b0=0.0674553
b1=0.134911
b2=0.0674553
a1=1.14298
a2=-0.412802

You can use this link to get the coefficients of n-order Butterworth filter with specific sample rate and cut of frequency. In order to test the result. You can use MATLAB to obtain the coefficients and compare with program's output

http://www.exstrom.com/journal/sigproc

fnorm = f_cutoff/(f_sample_rate/2); % normalized cut off freq, http://www.exstrom.com/journal/sigproc
% Low pass Butterworth filter of order N
[b1, a1] = butter(nth_order, fnorm,'low');

For those wondering where those magical formulas from the other answers come from, here's a derivation following this example.

Starting with the transfer function for the Butterworth filter

G(s) = wc^2 / (s^2 + s*sqrt(2)*wc + wc^2)

where wc is the cutoff frequency, apply the bilinear z-transform, i.e. substitute s = 2/T*(1-z^-1)/(1+z^-1):

G(z) = wc^2 / ((2/T*(1-z^-1)/(1+z^-1))^2 + (2/T*(1-z^-1)/(1+z^-1))*sqrt(2)*wc + wc^2)

T is the sampling period [s].

The cutoff frequency needs to be pre-warped to compensate for the nonlinear relation between analog and digital frequency introduced by the z-transform:

wc = 2/T * tan(wd*T/2)

where wd is the desired cutoff frequency [rad/s].

Let C = tan(wd*T/2), for convenience, so that wc = 2/T*C.

Substituting this into the equation, the 2/T factors drop out:

G(z) = C^2 / ((1-z^-1)/(1+z^-1))^2 + (1-z^-1)/(1+z^-1)*sqrt(2)*C + C^2)

Multiply the numerator and denominator by (1+z^-1)^2 and expand, which yields:

G(z) = C^2*(1 + 2*z^-1 + z^-2) / (1 + sqrt(2)*C + C^2 + 2*(C^2-1)*z^-1 + (1-sqrt(2)*C+C^2)*z^-2')

Now, divide both numerator and denominator by the constant term from the denominator. For convenience, let D = 1 + sqrt(2)*C + C^2:

G(z) = C^2/D*(1 + 2*z^-1 + z^-2) / (1 + 2*(C^2-1)/D*z^-1 + (1-sqrt(2)*C+C^2)/D*z^-2')

This form is equivalent to the one we are looking for:

G(z) = (b0 + b1*z^-1 + b2*z^-1) / (1 + a1*z^-1 +a2*z^-2)

So we get the coefficients by equating them:

a0 = 1

a1 = 2*(C^2-1)/D

a2 = (1-sqrt(2)*C+C^2)/D

b0 = C^2/D

b1 = 2*b0

b2 = b0

where, again, D = 1 + sqrt(2)*C + C^2, C = tan(wd*T/2), wd is the desired cutoff frequency [rad/s], T is the sampling period [s].

FYI If you need a high pass filter coefs, all you have to do is use the same code:

const double ita =1.0/ tan(M_PI*ff);
const double q=sqrt(2.0);
b0 = 1.0 / (1.0 + q*ita + ita*ita);
b1= 2*b0;
b2= b0;
a1 = 2.0 * (ita*ita - 1.0) * b0;
a2 = -(1.0 - q*ita + ita*ita) * b0;

but then after multiply all your b terms by ita^2 and negate b1

b0 = b0*ita*ita;
b1 = -b1*ita*ita;
b2 = b2*ita*ita;

now you have a 2nd order high pass filter

The best way would be to use something like lab view to simulate your filter and get the coefficients as per your fc and fs. And then use them in c. And finally burn in the code to your microcon. And compare the response with the ones in lab view or simulink.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!