问题
Let's say I have a multithreaded C++ program that handles requests in the form of a function call to handleRequest(string key)
. Each call to handleRequest
occurs in a separate thread, and there are an arbitrarily large number of possible values for key
.
I want the following behavior:
- Simultaneous calls to
handleRequest(key)
are serialized when they have the same value forkey
. - Global serialization is minimized.
The body of handleRequest
might look like this:
void handleRequest(string key) {
KeyLock lock(key);
// Handle the request.
}
Question: How would I implement KeyLock
to get the required behavior?
A naive implementation might start off like this:
KeyLock::KeyLock(string key) {
global_lock->Lock();
internal_lock_ = global_key_map[key];
if (internal_lock_ == NULL) {
internal_lock_ = new Lock();
global_key_map[key] = internal_lock_;
}
global_lock->Unlock();
internal_lock_->Lock();
}
KeyLock::~KeyLock() {
internal_lock_->Unlock();
// Remove internal_lock_ from global_key_map iff no other threads are waiting for it.
}
...but that requires a global lock at the beginning and end of each request, and the creation of a separate Lock
object for each request. If contention is high between calls to handleRequest
, that might not be a problem, but it could impose a lot of overhead if contention is low.
回答1:
You could do something similar to what you have in your question, but instead of a single global_key_map have several (probably in an array or vector) - which one is used is determined by some simple hash function on the string.
That way instead of a single global lock, you spread that out over several independent ones.
This is a pattern that is often used in memory allocators (I don't know if the pattern has a name - it should). When a request comes in, something determines which pool the allocation will come from (usually the size of the request, but other parameters can factor in as well), then only that pool needs to be locked. If an allocation request comes in from another thread that will use a different pool, there's no lock contention.
回答2:
It will depend on the platform, but the two techniques that I'd try would be:
- Use named mutex/synchronization objects, where object name = Key
- Use filesystem-based locking, where you try to create a non-shareable temporary file with the key name. If it exists already (=already locked) this will fail and you'll have to poll to retry
Both techniques will depend on the detail of your OS. Experiment and see which works. .
回答3:
Perhaps an std::map<std::string, MutexType>
would be what you want, where MutexType
is the type of the mutex you want. You will probably have to wrap accesses to the map in another mutex in order to ensure that no other thread is inserting at the same time (and remember to perform the check again after the mutex is locked to ensure that another thread didn't add the key while waiting on the mutex!).
The same principle could apply to any other synchronization method, such as a critical section.
回答4:
Raise granularity and lock entire key-ranges
This is a variation on Mike B's answer, where instead of having several fluid lock maps you have a single fixed array of locks that apply to key-ranges instead of single keys.
Simplified example: create array of 256 locks at startup, then use first byte of key to determine index of lock to be acquired (i.e. all keys starting with 'k' will be guarded by locks[107]
).
To sustain optimal throughput you should analyze distribution of keys and contention rate. The benefits of this approach are zero dynamic allocations and simple cleanup; you also avoid two-step locking. The downside is potential contention peaks if key distribution becomes skewed over time.
回答5:
After thinking about it, another approach might go something like this:
- In
handleRequest
, create aCallback
that does the actual work. - Create a
multimap<string, Callback*> global_key_map
, protected by a mutex. - If a thread sees that
key
is already being processed, it adds itsCallback*
to theglobal_key_map
and returns. - Otherwise, it calls its callback immediately, and then calls the callbacks that have shown up in the meantime for the same key.
Implemented something like this:
LockAndCall(string key, Callback* callback) {
global_lock.Lock();
if (global_key_map.contains(key)) {
iterator iter = global_key_map.insert(key, callback);
while (true) {
global_lock.Unlock();
iter->second->Call();
global_lock.Lock();
global_key_map.erase(iter);
iter = global_key_map.find(key);
if (iter == global_key_map.end()) {
global_lock.Unlock();
return;
}
}
} else {
global_key_map.insert(key, callback);
global_lock.Unlock();
}
}
This has the advantage of freeing up threads that would otherwise be waiting for a key lock, but apart from that it's pretty much the same as the naive solution I posted in the question.
It could be combined with the answers given by Mike B and Constantin, though.
回答6:
/**
* StringLock class for string based locking mechanism
* e.g. usage
* StringLock strLock;
* strLock.Lock("row1");
* strLock.UnLock("row1");
*/
class StringLock {
public:
/**
* Constructor
* Initializes the mutexes
*/
StringLock() {
pthread_mutex_init(&mtxGlobal, NULL);
}
/**
* Lock Function
* The thread will return immediately if the string is not locked
* The thread will wait if the string is locked until it gets a turn
* @param string the string to lock
*/
void Lock(string lockString) {
pthread_mutex_lock(&mtxGlobal);
TListIds *listId = NULL;
TWaiter *wtr = new TWaiter;
wtr->evPtr = NULL;
wtr->threadId = pthread_self();
if (lockMap.find(lockString) == lockMap.end()) {
listId = new TListIds();
listId->insert(listId->end(), wtr);
lockMap[lockString] = listId;
pthread_mutex_unlock(&mtxGlobal);
} else {
wtr->evPtr = new Event(false);
listId = lockMap[lockString];
listId->insert(listId->end(), wtr);
pthread_mutex_unlock(&mtxGlobal);
wtr->evPtr->Wait();
}
}
/**
* UnLock Function
* @param string the string to unlock
*/
void UnLock(string lockString) {
pthread_mutex_lock(&mtxGlobal);
TListIds *listID = NULL;
if (lockMap.find(lockString) != lockMap.end()) {
lockMap[lockString]->pop_front();
listID = lockMap[lockString];
if (!(listID->empty())) {
TWaiter *wtr = listID->front();
Event *thdEvent = wtr->evPtr;
thdEvent->Signal();
} else {
lockMap.erase(lockString);
delete listID;
}
}
pthread_mutex_unlock(&mtxGlobal);
}
protected:
struct TWaiter {
Event *evPtr;
long threadId;
};
StringLock(StringLock &);
void operator=(StringLock&);
typedef list TListIds;
typedef map TMapLockHolders;
typedef map TMapLockWaiters;
private:
pthread_mutex_t mtxGlobal;
TMapLockWaiters lockMap;
};
来源:https://stackoverflow.com/questions/168249/how-do-i-use-an-arbitrary-string-as-a-lock-in-c