Confidence intervals of the muhaz package hazard function

拜拜、爱过 提交于 2019-12-03 06:33:23

Bootstrapping provides the answer as the commenter suggested. Your intuitions are right that you should expect the CIs to widen as the number at risk decreases. However, this effect is going to be diminished by the smoothing process and the longer the interval over which smoothing is applied the less you should notice the change in size of the CI. Try smoothing over a sufficiently short interval and you should notice the CIs widen more noticeably.

As you may find, these smoothed hazard plots can be of very limited use and are highly sensitive to how the smoothing is done. As an exercise, it is instructive to simulate survival times from a series of Weibull distributions w/ the shape parameter set to 0.8, 1.0, 1.2, and then look at these smoothed hazard plots and try to categorize them. To the extent that these plots are informative, it should be fairly easy to tell the difference between those three curves based on the trend rate of the hazard function. YMMV, but I haven't been very impressed with the results when I've done this tests with reasonable sample sizes consistent with clinical trials in oncology.

As an alternative to smoothed hazard plots, you might try fitting piecewise exponential curves using the method of Han et al. (http://www.ncbi.nlm.nih.gov/pubmed/23900779) and bootstrapping that. Their algorithm will identify the break points at which there is a statistically significant change in the hazard rate and may give you a better sense of the trend in the hazard rate than smoothed hazard plots. It will also avoid the somewhat arbitrary but consequential choice of smoothing parameters.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!