Indexing into containers: the mathematical underpinnings

不羁的心 提交于 2019-12-03 01:29:15

It seems like the index into the type is an index into the set of constructors, following by an index into the product representing that constructor. This can be implemented quite naturally with e.g. generics-sop.

First you need a datatype to represent possible indices into a single element of the product. This could be an index pointing to an element of type a, or an index pointing to something of type g b - which requires an index pointing into g and an index pointing to an element of type a in b. This is encoded with the following type:

import Generics.SOP

data ArgIx f x x' where 
  Here :: ArgIx f x x 
  There :: (Generic (g x')) => Ix g -> ArgIx f x x' -> ArgIx f x (g x') 

newtype Ix f = ...

The index itself is just a sum (implemented by NS for n-ary sum) of sums over the generic representation of the type (choice of constructor, choice of constructor element):

newtype Ix f = MkIx (forall x . NS (NS (ArgIx f x)) (Code (f x)))

You can write smart constructors for various indices:

listIx :: Natural -> Ix [] 
listIx 0 = MkIx $ S $ Z $ Z Here 
listIx k = MkIx $ S $ Z $ S $ Z $ There (listIx (k-1)) Here  

treeIx :: [Bool] -> Ix Tree 
treeIx [] = MkIx $ S $ Z $ S $ Z Here 
treeIx (b:bs) = 
  case b of 
    True -> MkIx $ S $ Z $ Z $ There (treeIx bs) Here 
    False -> MkIx $ S $ Z $ S $ S $ Z $ There (treeIx bs) Here 

roseIx :: [Natural] -> Ix Rose 
roseIx [] = MkIx $ Z $ Z Here  
roseIx (k:ks) = MkIx $ Z $ S $ Z $ There (listIx k) (There (roseIx ks) Here)

Note that e.g. in the list case, you cannot construct an (non-bottom) index pointing to the [] constructor - likewise for Tree and Empty, or constructors containing values whose type is not a or something containing some values of type a. The quantification in MkIx prevents the construction bad things like an index pointing to the first Int in data X x = X Int x where x is instantiated to Int.

The implementation of the index function is fairly straightforward, even if the types are scary:

(!) :: (Generic (f x)) => f x -> Ix f -> Maybe x 
(!) arg (MkIx ix) = go (unSOP $ from arg) ix where 

  atIx :: a -> ArgIx f x a -> Maybe x 
  atIx a Here = Just a 
  atIx a (There ix0 ix1) = a ! ix0 >>= flip atIx ix1 

  go :: (All SListI xss) => NS (NP I) xss -> NS (NS (ArgIx f x)) xss -> Maybe x 
  go (Z a) (Z b) = hcollapse $ hzipWith (\(I x) -> K . atIx x) a b 
  go (S x) (S x') = go x x' 
  go Z{} S{} = Nothing 
  go S{} Z{} = Nothing 

The go function compares the constructor pointed to by the index and the actual constructor used by the type. If the constructors don't match, the indexing returns Nothing. If they do, the actual indexing is done - which is trivial in the case that the index points exactly Here, and in the case of some substructure, both indexing operations must succeed one after the other, which is handled by >>=.

And a simple test:

>map (("hello" !) . listIx) [0..5]
[Just 'h',Just 'e',Just 'l',Just 'l',Just 'o',Nothing]
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!