问题
How to check if a binary number can be divided by 10 (decimal), without converting it to other system. For example, we have a number:
1010 1011 0100 0001 0000 0100
How we can check that this number is divisible by 10?
回答1:
First split the number into odd and even bits (I'm calling "even" the bits corresponding to even powers of 2):
100100110010110000000101101110 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 even 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 odd
Now in each of these, add and subtract the digits alternately, as in the standard test for divisibility by 11 in decimal (starting with addition at the right):
100100110010110000000101101110 +0-1+0-1+0-0+1-0+0-0+1-1+0-1+0 = -2 +1-0+0-1+0-1+1-0+0-0+0-0+1-1+1 = 1
Now double the sum of the odd digits and add it to the sum of the even digits:
2*1 + -2 = 0
If the result is divisible by 5, as in this case, the number itself is divisible by 5.
Since this number is also divisible by 2 (the rightmost digit being 0), it is divisible by 10.
http://mathforum.org/library/drmath/view/55908.html
回答2:
If you are talking about computational methods, you can do a divisiblity-by-5 test and a divisibility-by-2 test.
The numbers below assume unsigned 32-bit arithmetic, but can easily be extended to larger numbers.
I'll provide some code first, followed by a more textual explanation:
unsigned int div5exact(unsigned int n)
{
// returns n/5 as long as n actually divides 5
// (because 'n * (INV5 * 5)' == 'n * 1' mod 2^32
#define INV5 0xcccccccd
return n * INV5;
}
unsigned int divides5(unsigned int n)
{
unsigned int q = div5exact(n);
if (q <= 0x33333333) /* q*5 < 2^32? */
{
/* q*5 doesn't overflow, so n == q*5 */
return 1;
}
else
{
/* q*5 overflows, so n != q*5 */
return 0;
}
}
int divides2(unsigned int n)
{
/* easy divisibility by 2 test */
return (n & 1) == 0;
}
int divides10(unsigned int n)
{
return divides2(n) && divides5(n);
}
/* fast one-liner: */
#define DIVIDES10(n) ( ((n) & 1) == 0 && ((n) * 0xcccccccd) <= 0x33333333 )
Divisibility by 2 is easy: (n&1) == 0 means that n is even.
Divisibility by 5 involves multiplying by the inverse of 5, which is 0xcccccccd (because 0xcccccccd * 5 == 0x400000001, which is just 0x1 if you truncate to 32 bits).
When you multiply n*5 by the inverse of 5, you get n * 5*(inverse of 5), which in 32-bit math simplifies to n*1 .
Now let's say n and q are 32-bit numbers, and q = n*(inverse of 5) mod 232.
Because n is no greater than 0xffffffff, we know that n/5 is no greater than (232-1)/5 (which is 0x33333333). Therefore, we know if q is less than or equal to (232-1)/5, then we know n divides exactly by 5, because q * 5 doesn't get truncated in 32 bits, and is therefore equal to n, so n divides q and 5.
If q is greater than (232-1)/5, then we know it doesn't divide 5, because there is a one-one mapping between the 32-bit numbers divisible by 5 and the numbers between 0 and (232-1)/5, and so any number out of this range doesn't map to a number that's divisible by 5.
回答3:
Here is the code in python to check the divisibilty by 10 using bitwise technique
#taking input in string which is a binary number eg: 1010,1110
s = input()
#taking initial value of x as o
x = 0
for i in s:
if i == '1':
x = (x*2 + 1) % 10
else:
x = x*2 % 10
#if x is turn to be 0 then it is divisible by 10
if x:
print("Not divisible by 10")
else:
print("Divisible by 10")
来源:https://stackoverflow.com/questions/12356442/binary-divisibility-by-10