spark调优
1.分配更多的资源 它是性能优化调优的王道,就是增加和分配更多的资源,这对于性能和速度上的提升是显而易见的, 基本上,在一定范围之内,增加资源与性能的提升,是成正比的;写完了一个复杂的spark作业之后,进行性能调 优的时候, 首先第一步,就是要来调节优的资源配置;在这个基础之上,如果说你的spark作业,能够分配的资源达到 了你的能力范围的顶端之后,无法再分配更多的资源了,公司资源有限;那么才是考虑去做后面的这些性能调优的点。 2.参数调节到多大才算大 第一种情况:standalone模式 先计算出公司spark集群上的所有资源 每台节点的内存大小和cpu核数, 比如:一共有20台worker节点,每台节点8g内存,10个cpu。 实际任务在给定资源的时候,可以给20个executor、 每个executor的内存8g、每个executor的使用的cpu个数 10。 第二种情况:Yarn 先计算出yarn集群的所有大小,比如一共500g内存,100个cpu; 这个时候可以分配的大资源,比如给定50个executor、每个executor的内存 大小10g,每个executor使用的cpu 个数为2。 使用原则:你能使用的资源有多大,就尽量去调节到大的大小(executor的数量:几十个到上百个不等;executor的 内存;exector的cpu个数