图神经网络概述第三弹:来自IEEE Fellow的GNN综述
图神经网络(GNN)热度持续上升,之前我们曾介绍了清华两篇综述论文,参见:深度学习时代的图模型,清华发文综述图网络,和清华大学图神经网络综述:模型与应用。最近,IEEE Fellow、Senior Member 和 Member Zonghan Wu 等人又贡献了一篇图神经网络综述文章。这篇文章介绍了 GNN 的背景知识、发展历史、分类与框架、应用等,详细介绍了各种模型与方法,包括公式、模型图示、算法等,希望对大家有所帮助。 引言 深度网络的最新进展推进了模式识别和数据挖掘领域的研究。目标检测、机器翻译、语音识别等许多机器学习任务曾高度依赖手工特征工程来提取信息特征集合,但多种端到端深度学习方式(即卷积神经网络、长短期记忆网络和自编码器)改变了这种状况。深度学习在多个领域的成功主要归功于计算资源的快速发展(如 GPU)、大量训练数据的收集,还有深度学习从欧几里得数据(如图像、文本和视频)中提取潜在表征的有效性。例如 CNN 可以利用平移不变性、局部连通性和图像数据语意合成性,从而提取出与整个数据集共享的局部有意义的特征,用于各种图像分析任务。 尽管深度学习已经在欧几里得数据中取得了很大的成功,但从非欧几里得域生成的数据已经取得更广泛的应用,它们需要有效分析。例如,在电子商务领域,一个基于图的学习系统能够利用用户和产品之间的交互以实现高度精准的推荐。在化学领域,分子被建模为图