梯度弥散与梯度爆炸
问题描述 先来看看问题描述。 当我们使用sigmoid funciton 作为激活函数时,随着神经网络hidden layer层数的增加,训练误差反而加大了,如上图所示。 下面以2层隐藏层神经网络为例,进行说明。 结点中的柱状图表示每个神经元参数的更新速率(梯度)大小,有图中可以看出,layer2整体速度都要大于layer1. 我们又取每层layer中参数向量的长度来粗略的估计该层的更新速率,得到下图。 可以看出,layer2的速率都要大于layer1. 然后我们继续加深神经网络的层数。 可以得到下面的结论: 靠近输出层的hidden layer 梯度大,参数更新快,所以很快就会收敛; 而靠近输入层的hidden layer 梯度小,参数更新慢,几乎就和初始状态一样,随机分布。 在上面的四层隐藏层网络结构中,第一层比第四层慢了接近100倍!! 这种现象就是 梯度弥散(vanishing gradient problem) 。而在另一种情况中,前面layer的梯度通过训练变大,而后面layer的梯度指数级增大,这种现象又叫做 梯度爆炸(exploding gradient problem) 。 总的来说,就是在这个深度网络中, 梯度相当不稳定(unstable)。 直观说明 那么为何会出现这种情况呢? 现在我们来直观的说明一下。 在上面的升级网络中,我们随意更新一个参数,加上一个Δw